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High-level synthesis (HLS) tools

Many industrial and academic tools

Spark, Gaut, Ugh, MMalpha, Catapult-C, Pico-Express, Impulse-C, etc.

Quite good at optimizing computation kernel

Optimizes finite state machine (FSM).
Exploits instruction-level parallelism (ILP).
Performs operator selection, resource sharing, scheduling, etc.

But most designers prefer to ignore HLS tools and code in VHDL.

Still a huge problem for feeding the accelerators with data

Lack of good interface support * write (expert) VHDL glue.
Lack of communication opt. * redesign the algorithm.
Lack of powerful code analyzers * rename or find tricks.
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Our goal: use HLS tools as back-end compilers

Focus on accelerators limited by bandwidth

Use the adequate FPGA resources for computation throughput.
Optimize bandwidth throughput.

Apply source-to-source transformations

Push the dirty work in the back-end compiler.
Optimize transfers at C level.
Compile any new functions with the same HLS tool.

Use Altera C2H as a back-end compiler. Main features:
Syntax-directed translation to hardware.
Basic DDR-latency-aware software pipelining with internal FIFOs.
Full interface within the complete system.
A few compilation pragmas.
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Asymmetric DDR accesses: need burst communications

Ex: DDR-400 128Mbx8, size 16MB, CAS 3, 200MHz. Successive reads
to the same row every 10 ns , to different rows every 80 ns .
ý bad spatial DDR locality can kill performances by a factor 8!

void vector_sum (int* __restrict__ a, b, c, int n) {
for (int i = 0; i < n; i++) c[i] = a[i] + b[i];

}

/RAS

/CAS

/WE

DQ

PRECHARGE READ

ACTIVATE

load a(i)

a(i)

PRECHARGE READ

ACTIVATE

load b(i)

b(i)

store c(i)

PRECHARGE

ACTIVATE

WRITE

c(i)

Non-optimized version: time gaps + data thrown away.
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}

/RAS

/CAS

/WE

DQ

ACTIVATE

a(i) a(i+k)

PRECHARGE READ PRECHARGE READ

ACTIVATE

b(i) b(i+k)

store c(i) ... c(i+k)

PRECHARGE

ACTIVATE

WRITE

c(i) c(i+k)

load a(i) ... a(i+k) load b(i) ... b(i+k)

block size

Optimized block version: reduces gaps, exploits burst.
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Experimental results: typical examples

Typical speed-up
vs block size figure
(here vector sum).
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Kernel Speed-up ALUT Dedicated Total Total block DSP block Max Frequency
registers registers memory bits 9-bit elements (MHz > 100)

SA 1 5105 3606 3738 66908 8 205.85
VS0 1 5333 4607 4739 68956 8 189.04
VS1 6.54 10345 10346 11478 269148 8 175.93

MM0 1 6452 4557 4709 68956 40 191.09
MM1 7.37 15255 15630 15762 335196 188 162.02

SA: system alone.

VS0 & VS1: vector sum direct & optimized version.

MM0 & MM1: matrix-matrix multiply direct & optimized.
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Polyhedral model in a nutshell

Ex: product of polynomials

for (i=0; i<= 2*N; i++)

S1: c[i] = 0;

for (i=0; i<=N; i++)

for (j=0; j<=N; j++)

S2: c[i+j] = c[i+j] + a[i]*b[j]

θ(S2, i , j) = (1, i , j)

0 N = 3

S2:

S1:

i

j

N θ(S1, i) = (0, i)

Affine (parameterized) loop bounds and accesses

Iteration domain, iteration vector

Instance-wise analysis, affine transformations

PIP: lexico-min in a polytope, given as a Quast (tree, internal
node = affine inequality of parameters, leaf = affine function).
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Polyhedral model: tiling

Tiled product of polynomials
θ(i , j) = (i + j , i)

i

j

n loops transformed into n
tile loops + n intra-tile loops.

Expressed from permutable
loops: affine function θ, here
θ : (i , j) 7→ (i + j , i).

Tile: atomic block operation.

Increases granularity of
computations.

Enables communication
coalescing (hoisting).

* We focus on a tile strip: double
buffering ' loop unrolling by 2.
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Goals and principles: illustrating example

We use tiling to increase spatial locality in the DDR accesses.
Here represents all elements of a given array for a given tile.
Example: compute ( , ) → followed by ( , ) → .

Approach 1: compute all tiles in sequence, with no overlap.

Bring data for Tile 1 to local memory.

External DDR Local Memory

Host Computer Accelerator

pipelining + data reuse * need for intra & inter-tile analysis +
tile scheduling (software pipelining) + local memory management
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Loop tiling: impact on reuse and communication

Version 1

i

j

phase 2
Double buffering

First

Read (c)

phase 1
Double buffering

Last write (c)

Version 2
j

i

phase 2
Double buffering

phase 1
Double buffering

Last write (c)

First read (c)

Load ' first reads ∩ tile domain Store ' last writes ∩ tile domain.
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Optimized transfers with maximal intra & inter-tile reuse

Double buffering style for optimized communications.
Tiling + coarse-grain software pipelining = affine function θ′.
Communication coalescing: each tile T has a Load(T ) and a Store(T ).
Transfers are done according to rows: spatial locality for DDR accesses.
Exploits data reuse: temporal locality + fewer communications.

Local memory management defines local buffers with reuse.
Requires lifetime analysis with respect to θ′.
Reduces memory size and provides access functions.
We use lattice-based memory reduction: A~i mod ~b (mix between
bounding box and sliding window).

Code generation generates final C code in a linearized form
Placement of FIFO synchronizations.
Boulet-Feautrier’s method for polytope scanning.
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Organization of communication & computation processes

iterations

time

=STORE0

STORE1

STORE0

STORE1

Note: 

dependence synchro.

DDR access synchro.

COMP1

COMP0

COMP1

COMP0

Load(T) at time 2T

Comp(T) at time 2T+2

Store(T) at time 2T+5

LOAD0

LOAD1

LOAD0

LOAD1

One function for each communicating process, one memory for each array.
Dedicated FIFOs of size 1 for synchronizations.
Transfers through explicit memory accesses.

LOCAL MEM

LOCAL MEM

LOCAL MEM

LOCAL MEM
STORE0

COMP0/1

STORE1LOAD0

LOAD1
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Related work: parallel languages & scratchpad memories

Compiler-directed scratchpad memory hierarchy design & management:
Kandemir, Choudhary, DAC’02.

Effective communication coalescing for data-parallel applications:
Chavarŕıa-Miranda, Mellor-Crummey, PPoPP’05.

Communication optimizations for fine-grained UPC applications: Chen,
Iancu, Yelick, PACT’05.

DRDU: A data reuse analysis technique for efficient scratchpad memory
management: Issenin, Borckmeyer, Miranda, Dutt. ACM TODAES 2007.

Automatic data movement and computation mapping for multi-level
parallel architectures with explicitly managed memories: Baskaran,
Bondhugula, Krishnam., Ramanujam, Rountev, Sadayappan, PPoPP’08.

A mapping path for multi-GPGPU accelerated computers from a portable
high level programming abstraction: Leung, Vasilache, Meister, Baskaran,
Wohlford, Bastoul, Lethin, GPGPU’10.

A reuse-aware prefetching scheme for scratchpad memory: Cong, Huang,
Liu, Zou, DAC’11.

PIPS is not (just) polyhedral software: Amini, Ancourt, Coelho,
Creusillet, Guelton, Irigoin, Jouvelot, Keryell, Villalon, IMPACT’11.
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Main principles

for (i=0; i<N; i++)

for (j=0; j<N; j++)

S(i,j)

endfor

endfor

for (I=0; I<N; I+=b)

for (J=0; J<N; J+=b)

Transfer(I,J)

for (i=I; i<min(I+b,N); i++)

for (j=J; j<min(J+b,N); j++)

S(i,j)

endfor

endfor

endfor

endfor

for (I=0; I<N; I+=b)

Transfer(I)

for (J=0; J<N; J+=b)

for (i=I; i<min(I+b,N); i++)

for (j=J; j<min(J+b,N); j++)

S(i,j)

endfor

endfor

endfor

endfor

Communication coalescing
Hoist communications out of loops.
Coalesce out of a tile or out of a tile strip.

Static scratch-pad optimizations
Decides statically which array portions will remain in SPM.
Granularity of arrays and function calls.

Dynamic scratch-pad optimizations
Make a copy of distant memory before a tile or before a tile strip.
Work at the granularity of array sections = approximation.
Only “regular” inter-tile reuse (null space of affine functions or shifts).
Apparently, no pipelining/overlapping (except in RStream).

ý But hypotheses and how “writes” are handled not clear.
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Optimizing reuse of remote accesses
Algorithmic solution based on parametric linear programming
Illustrating example

What do we put in Load(T) and Store(T)?

Minimal dependence structure:
Tiles

Computes

Loads

Stores

T − 2 T − 1 T + 1 T + 2T

Goal: make computations as local as possible.

Reuse local data: intra and inter-tile reuse in a tile strip.
Do not store in external memory after each write.
Minimize live-ranges in local memory.

Two important consequences:

Live-ranges can be all different: bounding box not enough.
External memory not up-to-date: over-loading unsafe.
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General specification

Define
Load(T ): data loaded from DDR just before executing tile T .
Store(T ): data stored to DDR just after T .

In(T ): data read before being written in the tile T .
Out(T ): data written by the tile T .

In(T ): possibly read before being written, over-approximation of In(T ).
Out(T ): data possibly written, over-approximation of Out(T ).
Out(T ): data provably written, under-approximation of Out(T ).

Can we give conditions for Load(T ) and Store(T ) to be valid?
How to compute then? Can they be over-approximated too?

Extreme solutions
For all T , Load(T ) = In(T ), Store(T ) = Out(T ) ý no inter-tile reuse.
All Load(T ) empty except first one ý no pipelining and overlapping.
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Formalization of valid, exact, and approximated load

Valid load

(i) Load at least what is needed but not previously produced:

In(T ) \Out(t < T ) ⊆ Load(t ≤ T )

(ii) Do not overwrite locally-defined data:

Out(t < T ) ∩ Load(T ) = ∅

In In InOut Out Out

LD

LD
LD

T−2 T−1 T Tiles

A
rr

ay
 a

d
d

re
ss
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Formalization of valid, exact, and approximated load

Exact load

(i) Load exactly what is needed but not previously produced:

∪t≤Tmax

{
In(t) \Out(t ′ < t)

}
=Load(t ≤ Tmax)

(ii) All loads should be disjoint (no redundant transfers):

Load(T ) ∩ Load(T ′) = ∅,∀T 6= T ′
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Formalization of valid, exact, and approximated load

Valid approximated load

(i) Load at least the exact amount of data:
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Illustrating example

Subtleties due to writes and live-ranges

Main conclusions:

If a data is locally written, be careful with data over-loading.

If a data may be locally written, be careful when over-loading
and when over-writing back to the DDR.

Many schemes are possible: to minimize live-ranges, load as
late as possible and store back as soon as possible.

To avoid the problems due to over-loading and over-writing,
two solutions:

Design an exact scheme.
Deal with approximations thanks to pre-loading.

Live-range splitting (i.e., re-loads) may be useful. This has
still to be explored.
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Handling approximations of data accesses

Exact situation
Store(T ) = Out(T ) \Out(t > T ) = LastWrite ∩ T
Load(T ) = In(T ) \ {In(t < T ) ∪Out(t < T )} = FirstReadBeforeWrite ∩ T

Possible solution with Out(T ) \Out(t > T ) ⊆ Store(T )
In

′
(T ) = In(T ) ∪ (Store(T ) \Out(T )) (all data that are “read”)

Ra(T ) = In
′
(T ) \Out(t < T ) (all data that need a remote access)

Load(T ) =
(
In

′
(T ) ∪ (Out(T ) ∩ Ra(t > T ))

)
\
(
In

′
(t < T ) ∪Out(t < T )

)
Intuitively, to reduce live-ranges, load ALAP and store ASAP.

Store x just after T if x is never written after T , i.e., x /∈ Out(t > T ).

Preload x if x may be written, i.e., x ∈ Out(t ≤ Tmax) \Out(t ≤ Tmax).

Load a value x always before it may be written, i.e., x /∈ Out(t < T ).
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Store x just after T if x is never written after T , i.e., x /∈ Out(t > T ).

Preload x if x may be written, i.e., x ∈ Out(t ≤ Tmax) \Out(t ≤ Tmax).

Load a value x always before it may be written, i.e., x /∈ Out(t < T ).
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Quast manipulations, simplifications, and inversions

For each array c , consider an array element c(~m).

Compute 3 quasts, parameterized by ~m and outer tile indices:

In(~m) = min{T | ~m ∈ In(T )} (Note: = +∞ if set empty).
Out(~m) = min{T | ~m ∈ Out(T )}.
Out(~m) = min{T | ~m ∈ Out(T )}.

Combine them to get T (~m) = min(Out(~m),min(Out(~m), In(~m))),
with just a slight change: If min(Out(~m), In(~m)) = Out(~m),
replace by the leaf by −∞, i.e., no need to load. Then:

if T (~m) 6= ±∞, load ~m just before tile T (~m).

Invert T (~m) into ~m(T ) (~m is now a variable, T a parameter),
add the constraints for tile T , this gives Load(T ) as a union
of polytopes (or possibly LBLs) parameterized by tile indices.
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Back to polynomial example
j

i

phase 2
Double buffering

phase 1
Double buffering

Last write (c)

First read (c) First reads of c (horizontal tiling).
System to be solved by PIP:

ii = N − j , jj = i , i + j = m
0 ≤ i ≤ N, 0 ≤ j ≤ N
bI ≤ ii ≤ b(I + 1)− 1
bJ ≤ jj ≤ b(J + 1)− 1

blue=constant (10), red=parameter
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Back to polynomial example
j

i

phase 2
Double buffering

phase 1
Double buffering

Last write (c)

First read (c) First reads of c (horizontal tiling).
System to be solved by PIP:

ii = N − j , jj = i , i + j = m
0 ≤ i ≤ N, 0 ≤ j ≤ N
bI ≤ ii ≤ b(I + 1)− 1
bJ ≤ jj ≤ b(J + 1)− 1

blue=constant (10), red=parameter

if (−10I + N −m ≥ 0)
if (10I − N + m + 9 ≥ 0) /* vertical band of elements, first tile */

(J, ii , jj , i , j) = (0,N −m, 0, 0,m)
else ⊥ /* means undefined */

else
if (−10I + 2N −m ≥ 0)

if (−10I + N −m + 9 ≥ 0) /* horizontal band, first tile */
(J, ii , jj , i , j) = (0, 10I , 10I − N + m, 10I − N + m,N − 10I )

else with k = bN+9m+9
10

c /* generic horizontal case */
(J, ii , jj , i , j) = (I + m − k, 10I , 10I − N + m, 10I − N + m,N − 10I )

else ⊥ /* undefined */
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if (−10I + N −m ≥ 0)
if (10I − N + m + 9 ≥ 0) /* vertical band of elements, first tile */

(i , j) = (0,m)
else ⊥

else
if (−10I + 2N −m ≥ 0)

if (−10I + N −m + 9 ≥ 0) /* horizontal band, first tile */
(i , j) = (10I − N + m,N − 10I )

else with k = bN+9m+9
10

c /* generic horizontal case */
(i , j) = (10I − N + m,N − 10I )

else ⊥ /* means undefined */
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Back to polynomial example
j

i

phase 2
Double buffering

phase 1
Double buffering

Last write (c)

First read (c) First reads of c (horizontal tiling).
System to be solved by PIP:

ii = N − j , jj = i , i + j = m
0 ≤ i ≤ N, 0 ≤ j ≤ N
bI ≤ ii ≤ b(I + 1)− 1
bJ ≤ jj ≤ b(J + 1)− 1

blue=constant (10), red=parameter

if (−10I + N −m ≥ 0)
if (10I − N + m + 9 ≥ 0)

(i , j) = (0,m) /* vertical portion of c */
else ⊥

else
if (−10I + 2N −m ≥ 0)

(i , j) = (10I − N + m,N − 10I ) /* horizontal portion of c */
else ⊥ /* means undefined */

This gives the array elements whose first access is a read:

{m | max(0,N − 10I − 9) ≤ m ≤ N − 10I} ∪ {m | N − 10I + 1 ≤ m ≤ 2N − 10I}
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ii = N − j , jj = i , i + j = m
0 ≤ i ≤ N, 0 ≤ j ≤ N
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{m | max(0,N−10I −9) ≤ m ≤ N−10I}∪{m | N−10I + 1 ≤ m ≤ 2N−10I}
First operation that accesses m:

FirstOpRead(m) = {(i , j) | (i , j) = (0,m), max(0,N − 10I − 9) ≤ m ≤ N − 10I}
∪ {(i , j) | (i , j) = (10I − N + m,N − 10I ), N − 10I + 1 ≤ m ≤ 2N − 10I}

Introduce tile T and invert to get the data to be loaded at T :

FirstReadInTile(T ) = {m | max(0,N − 10I − 9) ≤ m ≤ N − 10I , T = 0}
∪ {m | max(1, 10T ) ≤ m + 10I − N ≤ min(N, 10T + 9)}
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Conclusion: contributions

Bring HPC compilation tools to HLS of hardware accelerators.

To our knowledge, first process to automate communications
and integrate FPGA hardware accelerators, entirely at C level.

Identifies important needs for synchronization mechanisms at
source level and for better pragmas (e.g., restrict for pairs).

Quite general analysis and transformations to pipeline kernel
off-loading and optimize remote accesses (GPGPUs? Other?).

Starting point for using HLS tools as back-end compilers.
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Conclusion: perspectives

Many many opportunities for improvements.

Design more efficient Quast simplifications, compare with ISL.

Extend to parametric tile sizes.

Implement approximations and live-range splitting.

Explore link between coarse-grain schedule and memory size.

Design more domain-specific code generation.

Define compilation directives at C level for hardware synthesis.

Include parallelism and multi-process accelerators

Design customized memories and inter-processes buffers.

Exploit schedule with slacks for GALS pipelined designs.

Design a streaming language with shared memory for
inter-process communication.

. . .

Thank you for your attention!
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