
Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Optimizing Remote Accesses for Offloaded Kernels
Application to High-Level Synthesis for FPGA

Christophe Alias, Alain Darte, Alexandru Plesco

Compsys Team
Laboratoire de l’Informatique du Parallélisme (LIP)

École normale supérieure de Lyon

Workshop on Polyhedral Compilation Techniques (IMPACT’12)
Jan. 23, 2012, Paris, France

1 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

HLS tools, interfaces, and communications
Optimizing DDR accesses

Outline

1 Context and motivations (see ASAP’10 paper)
HLS tools, interfaces, and communications
Optimizing DDR accesses

2 Communicating processes and “double buffering”

3 Kernel off-loading with polyhedral techniques

2 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

HLS tools, interfaces, and communications
Optimizing DDR accesses

High-level synthesis (HLS) tools

Many industrial and academic tools

Spark, Gaut, Ugh, MMalpha, Catapult-C, Pico-Express, Impulse-C, etc.

Quite good at optimizing computation kernel

Optimizes finite state machine (FSM).
Exploits instruction-level parallelism (ILP).
Performs operator selection, resource sharing, scheduling, etc.

But most designers prefer to ignore HLS tools and code in VHDL.

Still a huge problem for feeding the accelerators with data

Lack of good interface support * write (expert) VHDL glue.
Lack of communication opt. * redesign the algorithm.
Lack of powerful code analyzers * rename or find tricks.

3 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

HLS tools, interfaces, and communications
Optimizing DDR accesses

High-level synthesis (HLS) tools

Many industrial and academic tools

Spark, Gaut, Ugh, MMalpha, Catapult-C, Pico-Express, Impulse-C, etc.

Quite good at optimizing computation kernel

Optimizes finite state machine (FSM).
Exploits instruction-level parallelism (ILP).
Performs operator selection, resource sharing, scheduling, etc.

But most designers prefer to ignore HLS tools and code in VHDL.

Still a huge problem for feeding the accelerators with data

Lack of good interface support * write (expert) VHDL glue.
Lack of communication opt. * redesign the algorithm.
Lack of powerful code analyzers * rename or find tricks.

3 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

HLS tools, interfaces, and communications
Optimizing DDR accesses

Our goal: use HLS tools as back-end compilers

Focus on accelerators limited by bandwidth

Use the adequate FPGA resources for computation throughput.
Optimize bandwidth throughput.

Apply source-to-source transformations

Push the dirty work in the back-end compiler.
Optimize transfers at C level.
Compile any new functions with the same HLS tool.

Use Altera C2H as a back-end compiler. Main features:
Syntax-directed translation to hardware.
Basic DDR-latency-aware software pipelining with internal FIFOs.
Full interface within the complete system.
A few compilation pragmas.

4 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

HLS tools, interfaces, and communications
Optimizing DDR accesses

Our goal: use HLS tools as back-end compilers

Focus on accelerators limited by bandwidth

Use the adequate FPGA resources for computation throughput.
Optimize bandwidth throughput.

Apply source-to-source transformations

Push the dirty work in the back-end compiler.
Optimize transfers at C level.
Compile any new functions with the same HLS tool.

Use Altera C2H as a back-end compiler. Main features:
Syntax-directed translation to hardware.
Basic DDR-latency-aware software pipelining with internal FIFOs.
Full interface within the complete system.
A few compilation pragmas.

4 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

HLS tools, interfaces, and communications
Optimizing DDR accesses

Our goal: use HLS tools as back-end compilers

Focus on accelerators limited by bandwidth

Use the adequate FPGA resources for computation throughput.
Optimize bandwidth throughput.

Apply source-to-source transformations

Push the dirty work in the back-end compiler.
Optimize transfers at C level.
Compile any new functions with the same HLS tool.

Use Altera C2H as a back-end compiler. Main features:
Syntax-directed translation to hardware.
Basic DDR-latency-aware software pipelining with internal FIFOs.
Full interface within the complete system.
A few compilation pragmas.

4 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

HLS tools, interfaces, and communications
Optimizing DDR accesses

Asymmetric DDR accesses: need burst communications

Ex: DDR-400 128Mbx8, size 16MB, CAS 3, 200MHz. Successive reads
to the same row every 10 ns , to different rows every 80 ns .
ý bad spatial DDR locality can kill performances by a factor 8!

void vector_sum (int* __restrict__ a, b, c, int n) {
for (int i = 0; i < n; i++) c[i] = a[i] + b[i];

}

/RAS

/CAS

/WE

DQ

PRECHARGE READ

ACTIVATE

load a(i)

a(i)

PRECHARGE READ

ACTIVATE

load b(i)

b(i)

store c(i)

PRECHARGE

ACTIVATE

WRITE

c(i)

Non-optimized version: time gaps + data thrown away.

5 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

HLS tools, interfaces, and communications
Optimizing DDR accesses

Asymmetric DDR accesses: need burst communications

Ex: DDR-400 128Mbx8, size 16MB, CAS 3, 200MHz. Successive reads
to the same row every 10 ns , to different rows every 80 ns .
ý bad spatial DDR locality can kill performances by a factor 8!

void vector_sum (int* __restrict__ a, b, c, int n) {
for (int i = 0; i < n; i++) c[i] = a[i] + b[i];

}

/RAS

/CAS

/WE

DQ

ACTIVATE

a(i) a(i+k)

PRECHARGE READ PRECHARGE READ

ACTIVATE

b(i) b(i+k)

store c(i) ... c(i+k)

PRECHARGE

ACTIVATE

WRITE

c(i) c(i+k)

load a(i) ... a(i+k) load b(i) ... b(i+k)

block size

Optimized block version: reduces gaps, exploits burst.

5 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

HLS tools, interfaces, and communications
Optimizing DDR accesses

Experimental results: typical examples

Typical speed-up
vs block size figure
(here vector sum).

 0

 1

 2

 3

 4

 5

 6

 7

2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

S
p
e
e
d
-u

p
Block size

Kernel Speed-up ALUT Dedicated Total Total block DSP block Max Frequency
registers registers memory bits 9-bit elements (MHz > 100)

SA 1 5105 3606 3738 66908 8 205.85
VS0 1 5333 4607 4739 68956 8 189.04
VS1 6.54 10345 10346 11478 269148 8 175.93

MM0 1 6452 4557 4709 68956 40 191.09
MM1 7.37 15255 15630 15762 335196 188 162.02

SA: system alone.

VS0 & VS1: vector sum direct & optimized version.

MM0 & MM1: matrix-matrix multiply direct & optimized.

6 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Loop tiling and the polytope model
Overview of the compilation scheme
Communication coalescing: related work

Outline

1 Context and motivations (see ASAP’10 paper)

2 Communicating processes and “double buffering”
Loop tiling and the polytope model
Overview of the compilation scheme
Communication coalescing: related work

3 Kernel off-loading with polyhedral techniques

7 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Loop tiling and the polytope model
Overview of the compilation scheme
Communication coalescing: related work

Polyhedral model in a nutshell

Ex: product of polynomials

for (i=0; i<= 2*N; i++)

S1: c[i] = 0;

for (i=0; i<=N; i++)

for (j=0; j<=N; j++)

S2: c[i+j] = c[i+j] + a[i]*b[j]

θ(S2, i , j) = (1, i , j)

0 N = 3

S2:

S1:

i

j

N θ(S1, i) = (0, i)

Affine (parameterized) loop bounds and accesses

Iteration domain, iteration vector

Instance-wise analysis, affine transformations

PIP: lexico-min in a polytope, given as a Quast (tree, internal
node = affine inequality of parameters, leaf = affine function).

8 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Loop tiling and the polytope model
Overview of the compilation scheme
Communication coalescing: related work

Polyhedral model: tiling

Tiled product of polynomials
θ(i , j) = (i + j , i)

i

j

n loops transformed into n
tile loops + n intra-tile loops.

Expressed from permutable
loops: affine function θ, here
θ : (i , j) 7→ (i + j , i).

Tile: atomic block operation.

Increases granularity of
computations.

Enables communication
coalescing (hoisting).

* We focus on a tile strip: double
buffering ' loop unrolling by 2.

9 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Loop tiling and the polytope model
Overview of the compilation scheme
Communication coalescing: related work

Polyhedral model: tiling

Tiled product of polynomials
θ(i , j) = (i + j , i)

i

j

n loops transformed into n
tile loops + n intra-tile loops.

Expressed from permutable
loops: affine function θ, here
θ : (i , j) 7→ (i + j , i).

Tile: atomic block operation.

Increases granularity of
computations.

Enables communication
coalescing (hoisting).

* We focus on a tile strip: double
buffering ' loop unrolling by 2.

9 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Loop tiling and the polytope model
Overview of the compilation scheme
Communication coalescing: related work

Polyhedral model: tiling

Tiled product of polynomials
θ(i , j) = (i + j , i)

i

j

n loops transformed into n
tile loops + n intra-tile loops.

Expressed from permutable
loops: affine function θ, here
θ : (i , j) 7→ (i + j , i).

Tile: atomic block operation.

Increases granularity of
computations.

Enables communication
coalescing (hoisting).

* We focus on a tile strip: double
buffering ' loop unrolling by 2.

9 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Loop tiling and the polytope model
Overview of the compilation scheme
Communication coalescing: related work

Goals and principles: illustrating example

We use tiling to increase spatial locality in the DDR accesses.
Here represents all elements of a given array for a given tile.
Example: compute ( , ) → followed by ( , ) → .

Approach 1: compute all tiles in sequence, with no overlap.

Bring data for Tile 1 to local memory.

External DDR Local Memory

Host Computer Accelerator

pipelining + data reuse * need for intra & inter-tile analysis +
tile scheduling (software pipelining) + local memory management

10 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Loop tiling and the polytope model
Overview of the compilation scheme
Communication coalescing: related work

Goals and principles: illustrating example

We use tiling to increase spatial locality in the DDR accesses.
Here represents all elements of a given array for a given tile.
Example: compute ( , ) → followed by ( , ) → .

Approach 1: compute all tiles in sequence, with no overlap.
Bring data for Tile 1 to local memory.

External DDR Local Memory

Host Computer Accelerator

pipelining + data reuse * need for intra & inter-tile analysis +
tile scheduling (software pipelining) + local memory management

10 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Loop tiling and the polytope model
Overview of the compilation scheme
Communication coalescing: related work

Goals and principles: illustrating example

We use tiling to increase spatial locality in the DDR accesses.
Here represents all elements of a given array for a given tile.
Example: compute ( , ) → followed by ( , ) → .

Approach 1: compute all tiles in sequence, with no overlap.
Bring data for Tile 1 to local memory.

External DDR Local Memory

Host Computer Accelerator

pipelining + data reuse * need for intra & inter-tile analysis +
tile scheduling (software pipelining) + local memory management

10 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Loop tiling and the polytope model
Overview of the compilation scheme
Communication coalescing: related work

Goals and principles: illustrating example

We use tiling to increase spatial locality in the DDR accesses.
Here represents all elements of a given array for a given tile.
Example: compute ( , ) → followed by ( , ) → .

Approach 1: compute all tiles in sequence, with no overlap.
Bring data for Tile 1 to local memory.

External DDR Local Memory

Host Computer Accelerator

pipelining + data reuse * need for intra & inter-tile analysis +
tile scheduling (software pipelining) + local memory management

10 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Loop tiling and the polytope model
Overview of the compilation scheme
Communication coalescing: related work

Goals and principles: illustrating example

We use tiling to increase spatial locality in the DDR accesses.
Here represents all elements of a given array for a given tile.
Example: compute ( , ) → followed by ( , ) → .

Approach 1: compute all tiles in sequence, with no overlap.
Bring data for Tile 1 to local memory.

External DDR Local Memory

Host Computer Accelerator

pipelining + data reuse * need for intra & inter-tile analysis +
tile scheduling (software pipelining) + local memory management

10 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Loop tiling and the polytope model
Overview of the compilation scheme
Communication coalescing: related work

Goals and principles: illustrating example

We use tiling to increase spatial locality in the DDR accesses.
Here represents all elements of a given array for a given tile.
Example: compute ( , ) → followed by ( , ) → .

Approach 1: compute all tiles in sequence, with no overlap.
Compute Tile 1 locally.

External DDR Local Memory

Host Computer Accelerator

pipelining + data reuse * need for intra & inter-tile analysis +
tile scheduling (software pipelining) + local memory management

10 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Loop tiling and the polytope model
Overview of the compilation scheme
Communication coalescing: related work

Goals and principles: illustrating example

We use tiling to increase spatial locality in the DDR accesses.
Here represents all elements of a given array for a given tile.
Example: compute ( , ) → followed by ( , ) → .

Approach 1: compute all tiles in sequence, with no overlap.
Compute Tile 1 locally.

External DDR Local Memory

Host Computer Accelerator

pipelining + data reuse * need for intra & inter-tile analysis +
tile scheduling (software pipelining) + local memory management

10 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Loop tiling and the polytope model
Overview of the compilation scheme
Communication coalescing: related work

Goals and principles: illustrating example

We use tiling to increase spatial locality in the DDR accesses.
Here represents all elements of a given array for a given tile.
Example: compute ( , ) → followed by ( , ) → .

Approach 1: compute all tiles in sequence, with no overlap.
Bring results of Tile 1 to external DDR.

External DDR Local Memory

Host Computer Accelerator

pipelining + data reuse * need for intra & inter-tile analysis +
tile scheduling (software pipelining) + local memory management

10 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Loop tiling and the polytope model
Overview of the compilation scheme
Communication coalescing: related work

Goals and principles: illustrating example

We use tiling to increase spatial locality in the DDR accesses.
Here represents all elements of a given array for a given tile.
Example: compute ( , ) → followed by ( , ) → .

Approach 1: compute all tiles in sequence, with no overlap.
Bring results of Tile 1 to external DDR.

External DDR Local Memory

Host Computer Accelerator

pipelining + data reuse * need for intra & inter-tile analysis +
tile scheduling (software pipelining) + local memory management

10 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Loop tiling and the polytope model
Overview of the compilation scheme
Communication coalescing: related work

Goals and principles: illustrating example

We use tiling to increase spatial locality in the DDR accesses.
Here represents all elements of a given array for a given tile.
Example: compute ( , ) → followed by ( , ) → .

Approach 1: compute all tiles in sequence, with no overlap.
Bring data for Tile 2 to local memory.

External DDR Local Memory

Host Computer Accelerator

pipelining + data reuse * need for intra & inter-tile analysis +
tile scheduling (software pipelining) + local memory management

10 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Loop tiling and the polytope model
Overview of the compilation scheme
Communication coalescing: related work

Goals and principles: illustrating example

We use tiling to increase spatial locality in the DDR accesses.
Here represents all elements of a given array for a given tile.
Example: compute ( , ) → followed by ( , ) → .

Approach 1: compute all tiles in sequence, with no overlap.
Bring data for Tile 2 to local memory.

External DDR Local Memory

Host Computer Accelerator

pipelining + data reuse * need for intra & inter-tile analysis +
tile scheduling (software pipelining) + local memory management

10 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Loop tiling and the polytope model
Overview of the compilation scheme
Communication coalescing: related work

Goals and principles: illustrating example

We use tiling to increase spatial locality in the DDR accesses.
Here represents all elements of a given array for a given tile.
Example: compute ( , ) → followed by ( , ) → .

Approach 1: compute all tiles in sequence, with no overlap.
Bring data for Tile 2 to local memory.

External DDR Local Memory

Host Computer Accelerator

pipelining + data reuse * need for intra & inter-tile analysis +
tile scheduling (software pipelining) + local memory management

10 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Loop tiling and the polytope model
Overview of the compilation scheme
Communication coalescing: related work

Goals and principles: illustrating example

We use tiling to increase spatial locality in the DDR accesses.
Here represents all elements of a given array for a given tile.
Example: compute ( , ) → followed by ( , ) → .

Approach 1: compute all tiles in sequence, with no overlap.
Bring data for Tile 2 to local memory.

External DDR Local Memory

Host Computer Accelerator

pipelining + data reuse * need for intra & inter-tile analysis +
tile scheduling (software pipelining) + local memory management

10 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Loop tiling and the polytope model
Overview of the compilation scheme
Communication coalescing: related work

Goals and principles: illustrating example

We use tiling to increase spatial locality in the DDR accesses.
Here represents all elements of a given array for a given tile.
Example: compute ( , ) → followed by ( , ) → .

Approach 1: compute all tiles in sequence, with no overlap.
Compute Tile 2 locally.

External DDR Local Memory

Host Computer Accelerator

pipelining + data reuse * need for intra & inter-tile analysis +
tile scheduling (software pipelining) + local memory management

10 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Loop tiling and the polytope model
Overview of the compilation scheme
Communication coalescing: related work

Goals and principles: illustrating example

We use tiling to increase spatial locality in the DDR accesses.
Here represents all elements of a given array for a given tile.
Example: compute ( , ) → followed by ( , ) → .

Approach 1: compute all tiles in sequence, with no overlap.
Compute Tile 2 locally.

External DDR Local Memory

Host Computer Accelerator

pipelining + data reuse * need for intra & inter-tile analysis +
tile scheduling (software pipelining) + local memory management

10 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Loop tiling and the polytope model
Overview of the compilation scheme
Communication coalescing: related work

Goals and principles: illustrating example

We use tiling to increase spatial locality in the DDR accesses.
Here represents all elements of a given array for a given tile.
Example: compute ( , ) → followed by ( , ) → .

Approach 1: compute all tiles in sequence, with no overlap.
Bring results of Tile 2 to external DDR.

External DDR Local Memory

Host Computer Accelerator

pipelining + data reuse * need for intra & inter-tile analysis +
tile scheduling (software pipelining) + local memory management

10 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Loop tiling and the polytope model
Overview of the compilation scheme
Communication coalescing: related work

Goals and principles: illustrating example

We use tiling to increase spatial locality in the DDR accesses.
Here represents all elements of a given array for a given tile.
Example: compute ( , ) → followed by ( , ) → .

Approach 1: compute all tiles in sequence, with no overlap.
Bring results of Tile 2 to external DDR.

External DDR Local Memory

Host Computer Accelerator

pipelining + data reuse * need for intra & inter-tile analysis +
tile scheduling (software pipelining) + local memory management

10 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Loop tiling and the polytope model
Overview of the compilation scheme
Communication coalescing: related work

Goals and principles: illustrating example

We use tiling to increase spatial locality in the DDR accesses.
Here represents all elements of a given array for a given tile.
Example: compute ( , ) → followed by ( , ) → .

Approach 2: pipeline transfers & computations, no inter-tile reuse.

Bring data for Tile 1 to local memory.

External DDR Local Memory

Host Computer Accelerator

pipelining + data reuse * need for intra & inter-tile analysis +
tile scheduling (software pipelining) + local memory management

10 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Loop tiling and the polytope model
Overview of the compilation scheme
Communication coalescing: related work

Goals and principles: illustrating example

We use tiling to increase spatial locality in the DDR accesses.
Here represents all elements of a given array for a given tile.
Example: compute ( , ) → followed by ( , ) → .

Approach 2: pipeline transfers & computations, no inter-tile reuse.
Bring data for Tile 1 to local memory.

External DDR Local Memory

Host Computer Accelerator

pipelining + data reuse * need for intra & inter-tile analysis +
tile scheduling (software pipelining) + local memory management

10 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Loop tiling and the polytope model
Overview of the compilation scheme
Communication coalescing: related work

Goals and principles: illustrating example

We use tiling to increase spatial locality in the DDR accesses.
Here represents all elements of a given array for a given tile.
Example: compute ( , ) → followed by ( , ) → .

Approach 2: pipeline transfers & computations, no inter-tile reuse.
Bring data for Tile 1 to local memory.

External DDR Local Memory

Host Computer Accelerator

pipelining + data reuse * need for intra & inter-tile analysis +
tile scheduling (software pipelining) + local memory management

10 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Loop tiling and the polytope model
Overview of the compilation scheme
Communication coalescing: related work

Goals and principles: illustrating example

We use tiling to increase spatial locality in the DDR accesses.
Here represents all elements of a given array for a given tile.
Example: compute ( , ) → followed by ( , ) → .

Approach 2: pipeline transfers & computations, no inter-tile reuse.
Bring data for Tile 1 to local memory.

External DDR Local Memory

Host Computer Accelerator

pipelining + data reuse * need for intra & inter-tile analysis +
tile scheduling (software pipelining) + local memory management

10 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Loop tiling and the polytope model
Overview of the compilation scheme
Communication coalescing: related work

Goals and principles: illustrating example

We use tiling to increase spatial locality in the DDR accesses.
Here represents all elements of a given array for a given tile.
Example: compute ( , ) → followed by ( , ) → .

Approach 2: pipeline transfers & computations, no inter-tile reuse.
Bring data for Tile 1 to local memory.

External DDR Local Memory

Host Computer Accelerator

pipelining + data reuse * need for intra & inter-tile analysis +
tile scheduling (software pipelining) + local memory management

10 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Loop tiling and the polytope model
Overview of the compilation scheme
Communication coalescing: related work

Goals and principles: illustrating example

We use tiling to increase spatial locality in the DDR accesses.
Here represents all elements of a given array for a given tile.
Example: compute ( , ) → followed by ( , ) → .

Approach 2: pipeline transfers & computations, no inter-tile reuse.
Compute Tile 1 locally and start data transfer for Tile 2.

External DDR Local Memory

Host Computer Accelerator

pipelining + data reuse * need for intra & inter-tile analysis +
tile scheduling (software pipelining) + local memory management

10 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Loop tiling and the polytope model
Overview of the compilation scheme
Communication coalescing: related work

Goals and principles: illustrating example

We use tiling to increase spatial locality in the DDR accesses.
Here represents all elements of a given array for a given tile.
Example: compute ( , ) → followed by ( , ) → .

Approach 2: pipeline transfers & computations, no inter-tile reuse.
Compute Tile 1 locally and start data transfer for Tile 2.

External DDR Local Memory

Host Computer Accelerator

pipelining + data reuse * need for intra & inter-tile analysis +
tile scheduling (software pipelining) + local memory management

10 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Loop tiling and the polytope model
Overview of the compilation scheme
Communication coalescing: related work

Goals and principles: illustrating example

We use tiling to increase spatial locality in the DDR accesses.
Here represents all elements of a given array for a given tile.
Example: compute ( , ) → followed by ( , ) → .

Approach 2: pipeline transfers & computations, no inter-tile reuse.
Bring back results of Tile 1 and receive data for Tile 2.

External DDR Local Memory

Host Computer Accelerator

pipelining + data reuse * need for intra & inter-tile analysis +
tile scheduling (software pipelining) + local memory management

10 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Loop tiling and the polytope model
Overview of the compilation scheme
Communication coalescing: related work

Goals and principles: illustrating example

We use tiling to increase spatial locality in the DDR accesses.
Here represents all elements of a given array for a given tile.
Example: compute ( , ) → followed by ( , ) → .

Approach 2: pipeline transfers & computations, no inter-tile reuse.
Wrong for Tile 2: need inter-tile analysis + inter-tile reuse.

External DDR Local Memory

Host Computer Accelerator

pipelining + data reuse * need for intra & inter-tile analysis +
tile scheduling (software pipelining) + local memory management

10 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Loop tiling and the polytope model
Overview of the compilation scheme
Communication coalescing: related work

Goals and principles: illustrating example

We use tiling to increase spatial locality in the DDR accesses.
Here represents all elements of a given array for a given tile.
Example: compute ( , ) → followed by ( , ) → .

Approach 3: pipeline transfers/computations, use inter-tile reuse.

Bring data for Tile 1 to local memory,

start transfer for Tile 2.

External DDR Local Memory

Host Computer Accelerator

pipelining + data reuse * need for intra & inter-tile analysis +
tile scheduling (software pipelining) + local memory management

10 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Loop tiling and the polytope model
Overview of the compilation scheme
Communication coalescing: related work

Goals and principles: illustrating example

We use tiling to increase spatial locality in the DDR accesses.
Here represents all elements of a given array for a given tile.
Example: compute ( , ) → followed by ( , ) → .

Approach 3: pipeline transfers/computations, use inter-tile reuse.
Bring data for Tile 1 to local memory.

start transfer for Tile 2.

External DDR Local Memory

Host Computer Accelerator

pipelining + data reuse * need for intra & inter-tile analysis +
tile scheduling (software pipelining) + local memory management

10 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Loop tiling and the polytope model
Overview of the compilation scheme
Communication coalescing: related work

Goals and principles: illustrating example

We use tiling to increase spatial locality in the DDR accesses.
Here represents all elements of a given array for a given tile.
Example: compute ( , ) → followed by ( , ) → .

Approach 3: pipeline transfers/computations, use inter-tile reuse.
Bring data for Tile 1 to local memory.

start transfer for Tile 2.

External DDR Local Memory

Host Computer Accelerator

pipelining + data reuse * need for intra & inter-tile analysis +
tile scheduling (software pipelining) + local memory management

10 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Loop tiling and the polytope model
Overview of the compilation scheme
Communication coalescing: related work

Goals and principles: illustrating example

We use tiling to increase spatial locality in the DDR accesses.
Here represents all elements of a given array for a given tile.
Example: compute ( , ) → followed by ( , ) → .

Approach 3: pipeline transfers/computations, use inter-tile reuse.
Bring data for Tile 1 to local memory, start transfer for Tile 2.

External DDR Local Memory

Host Computer Accelerator

pipelining + data reuse * need for intra & inter-tile analysis +
tile scheduling (software pipelining) + local memory management

10 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Loop tiling and the polytope model
Overview of the compilation scheme
Communication coalescing: related work

Goals and principles: illustrating example

We use tiling to increase spatial locality in the DDR accesses.
Here represents all elements of a given array for a given tile.
Example: compute ( , ) → followed by ( , ) → .

Approach 3: pipeline transfers/computations, use inter-tile reuse.
Bring data for Tile 1 to local memory, start transfer for Tile 2.

External DDR Local Memory

Host Computer Accelerator

pipelining + data reuse * need for intra & inter-tile analysis +
tile scheduling (software pipelining) + local memory management

10 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Loop tiling and the polytope model
Overview of the compilation scheme
Communication coalescing: related work

Goals and principles: illustrating example

We use tiling to increase spatial locality in the DDR accesses.
Here represents all elements of a given array for a given tile.
Example: compute ( , ) → followed by ( , ) → .

Approach 3: pipeline transfers/computations, use inter-tile reuse.
Compute Tile 1 locally and finish transfer for Tile 2.

External DDR Local Memory

Host Computer Accelerator

pipelining + data reuse * need for intra & inter-tile analysis +
tile scheduling (software pipelining) + local memory management

10 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Loop tiling and the polytope model
Overview of the compilation scheme
Communication coalescing: related work

Goals and principles: illustrating example

We use tiling to increase spatial locality in the DDR accesses.
Here represents all elements of a given array for a given tile.
Example: compute ( , ) → followed by ( , ) → .

Approach 3: pipeline transfers/computations, use inter-tile reuse.
Finish to compute Tile 1 locally.

External DDR Local Memory

Host Computer Accelerator

pipelining + data reuse * need for intra & inter-tile analysis +
tile scheduling (software pipelining) + local memory management

10 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Loop tiling and the polytope model
Overview of the compilation scheme
Communication coalescing: related work

Goals and principles: illustrating example

We use tiling to increase spatial locality in the DDR accesses.
Here represents all elements of a given array for a given tile.
Example: compute ( , ) → followed by ( , ) → .

Approach 3: pipeline transfers/computations, use inter-tile reuse.
Bring back results of Tile 1 and keep data to compute Tile 2.

External DDR Local Memory

Host Computer Accelerator

pipelining + data reuse * need for intra & inter-tile analysis +
tile scheduling (software pipelining) + local memory management

10 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Loop tiling and the polytope model
Overview of the compilation scheme
Communication coalescing: related work

Goals and principles: illustrating example

We use tiling to increase spatial locality in the DDR accesses.
Here represents all elements of a given array for a given tile.
Example: compute ( , ) → followed by ( , ) → .

Approach 3: pipeline transfers/computations, use inter-tile reuse.
Bring back results of Tile 1 and keep data to compute Tile 2.

External DDR Local Memory

Host Computer Accelerator

pipelining + data reuse * need for intra & inter-tile analysis +
tile scheduling (software pipelining) + local memory management

10 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Loop tiling and the polytope model
Overview of the compilation scheme
Communication coalescing: related work

Goals and principles: illustrating example

We use tiling to increase spatial locality in the DDR accesses.
Here represents all elements of a given array for a given tile.
Example: compute ( , ) → followed by ( , ) → .

Approach 3: pipeline transfers/computations, use inter-tile reuse.
Bring results of Tile 2 to external DDR.

External DDR Local Memory

Host Computer Accelerator

pipelining + data reuse * need for intra & inter-tile analysis +
tile scheduling (software pipelining) + local memory management

10 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Loop tiling and the polytope model
Overview of the compilation scheme
Communication coalescing: related work

Goals and principles: illustrating example

We use tiling to increase spatial locality in the DDR accesses.
Here represents all elements of a given array for a given tile.
Example: compute ( , ) → followed by ( , ) → .

Approach 3: pipeline transfers/computations, use inter-tile reuse.
Bring results of Tile 2 to external DDR.

External DDR Local Memory

Host Computer Accelerator

pipelining + data reuse * need for intra & inter-tile analysis +
tile scheduling (software pipelining) + local memory management

10 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Loop tiling and the polytope model
Overview of the compilation scheme
Communication coalescing: related work

Goals and principles: illustrating example

We use tiling to increase spatial locality in the DDR accesses.
Here represents all elements of a given array for a given tile.
Example: compute ( , ) → followed by ( , ) → .

Approach 3: pipeline transfers/computations, use inter-tile reuse.
Bring results of Tile 2 to external DDR.

External DDR Local Memory

Host Computer Accelerator

pipelining + data reuse * need for intra & inter-tile analysis +
tile scheduling (software pipelining) + local memory management

10 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Loop tiling and the polytope model
Overview of the compilation scheme
Communication coalescing: related work

Loop tiling: impact on reuse and communication

Version 1

i

j

phase 2
Double buffering

First

Read (c)

phase 1
Double buffering

Last write (c)

Version 2
j

i

phase 2
Double buffering

phase 1
Double buffering

Last write (c)

First read (c)

Load ' first reads ∩ tile domain Store ' last writes ∩ tile domain.

11 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Loop tiling and the polytope model
Overview of the compilation scheme
Communication coalescing: related work

Loop tiling: impact on reuse and communication

Version 1

i

j

phase 2
Double buffering

First

Read (c)

phase 1
Double buffering

Last write (c)

Version 2
j

i

phase 2
Double buffering

phase 1
Double buffering

Last write (c)

First read (c)

Load ' first reads ∩ tile domain Store ' last writes ∩ tile domain.

11 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Loop tiling and the polytope model
Overview of the compilation scheme
Communication coalescing: related work

Loop tiling: impact on reuse and communication

Version 1

i

j

phase 2
Double buffering

First

Read (c)

phase 1
Double buffering

Last write (c)

Version 2
j

i

phase 2
Double buffering

phase 1
Double buffering

Last write (c)

First read (c)

Load ' first reads ∩ tile domain Store ' last writes ∩ tile domain.

11 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Loop tiling and the polytope model
Overview of the compilation scheme
Communication coalescing: related work

Optimized transfers with maximal intra & inter-tile reuse

Double buffering style for optimized communications.
Tiling + coarse-grain software pipelining = affine function θ′.
Communication coalescing: each tile T has a Load(T ) and a Store(T ).
Transfers are done according to rows: spatial locality for DDR accesses.
Exploits data reuse: temporal locality + fewer communications.

Local memory management defines local buffers with reuse.
Requires lifetime analysis with respect to θ′.
Reduces memory size and provides access functions.
We use lattice-based memory reduction: A~i mod ~b (mix between
bounding box and sliding window).

Code generation generates final C code in a linearized form
Placement of FIFO synchronizations.
Boulet-Feautrier’s method for polytope scanning.

12 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Loop tiling and the polytope model
Overview of the compilation scheme
Communication coalescing: related work

Organization of communication & computation processes

iterations

time

=STORE0

STORE1

STORE0

STORE1

Note: 

dependence synchro.

DDR access synchro.

COMP1

COMP0

COMP1

COMP0

Load(T) at time 2T

Comp(T) at time 2T+2

Store(T) at time 2T+5

LOAD0

LOAD1

LOAD0

LOAD1

One function for each communicating process, one memory for each array.
Dedicated FIFOs of size 1 for synchronizations.
Transfers through explicit memory accesses.

LOCAL MEM

LOCAL MEM

LOCAL MEM

LOCAL MEM
STORE0

COMP0/1

STORE1LOAD0

LOAD1

13 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Loop tiling and the polytope model
Overview of the compilation scheme
Communication coalescing: related work

Organization of communication & computation processes

iterations

time

=STORE0

STORE1

STORE0

STORE1

Note: 

dependence synchro.

DDR access synchro.

COMP1

COMP0

COMP1

COMP0

Load(T) at time 2T

Comp(T) at time 2T+2

Store(T) at time 2T+5

LOAD0

LOAD1

LOAD0

LOAD1

One function for each communicating process, one memory for each array.
Dedicated FIFOs of size 1 for synchronizations.
Transfers through explicit memory accesses.

LOCAL MEM

LOCAL MEM

LOCAL MEM

LOCAL MEM
STORE0

COMP0/1

STORE1LOAD0

LOAD1

13 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Loop tiling and the polytope model
Overview of the compilation scheme
Communication coalescing: related work

Related work: parallel languages & scratchpad memories

Compiler-directed scratchpad memory hierarchy design & management:
Kandemir, Choudhary, DAC’02.

Effective communication coalescing for data-parallel applications:
Chavarŕıa-Miranda, Mellor-Crummey, PPoPP’05.

Communication optimizations for fine-grained UPC applications: Chen,
Iancu, Yelick, PACT’05.

DRDU: A data reuse analysis technique for efficient scratchpad memory
management: Issenin, Borckmeyer, Miranda, Dutt. ACM TODAES 2007.

Automatic data movement and computation mapping for multi-level
parallel architectures with explicitly managed memories: Baskaran,
Bondhugula, Krishnam., Ramanujam, Rountev, Sadayappan, PPoPP’08.

A mapping path for multi-GPGPU accelerated computers from a portable
high level programming abstraction: Leung, Vasilache, Meister, Baskaran,
Wohlford, Bastoul, Lethin, GPGPU’10.

A reuse-aware prefetching scheme for scratchpad memory: Cong, Huang,
Liu, Zou, DAC’11.

PIPS is not (just) polyhedral software: Amini, Ancourt, Coelho,
Creusillet, Guelton, Irigoin, Jouvelot, Keryell, Villalon, IMPACT’11.

14 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Loop tiling and the polytope model
Overview of the compilation scheme
Communication coalescing: related work

Main principles

for (i=0; i<N; i++)

for (j=0; j<N; j++)

S(i,j)

endfor

endfor

for (I=0; I<N; I+=b)

for (J=0; J<N; J+=b)

Transfer(I,J)

for (i=I; i<min(I+b,N); i++)

for (j=J; j<min(J+b,N); j++)

S(i,j)

endfor

endfor

endfor

endfor

for (I=0; I<N; I+=b)

Transfer(I)

for (J=0; J<N; J+=b)

for (i=I; i<min(I+b,N); i++)

for (j=J; j<min(J+b,N); j++)

S(i,j)

endfor

endfor

endfor

endfor

Communication coalescing
Hoist communications out of loops.
Coalesce out of a tile or out of a tile strip.

Static scratch-pad optimizations
Decides statically which array portions will remain in SPM.
Granularity of arrays and function calls.

Dynamic scratch-pad optimizations
Make a copy of distant memory before a tile or before a tile strip.
Work at the granularity of array sections = approximation.
Only “regular” inter-tile reuse (null space of affine functions or shifts).
Apparently, no pipelining/overlapping (except in RStream).

ý But hypotheses and how “writes” are handled not clear.

15 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Loop tiling and the polytope model
Overview of the compilation scheme
Communication coalescing: related work

Main principles

for (i=0; i<N; i++)

for (j=0; j<N; j++)

S(i,j)

endfor

endfor

for (I=0; I<N; I+=b)

for (J=0; J<N; J+=b)

Transfer(I,J)

for (i=I; i<min(I+b,N); i++)

for (j=J; j<min(J+b,N); j++)

S(i,j)

endfor

endfor

endfor

endfor

for (I=0; I<N; I+=b)

Transfer(I)

for (J=0; J<N; J+=b)

for (i=I; i<min(I+b,N); i++)

for (j=J; j<min(J+b,N); j++)

S(i,j)

endfor

endfor

endfor

endfor

Communication coalescing
Hoist communications out of loops.
Coalesce out of a tile or out of a tile strip.

Static scratch-pad optimizations
Decides statically which array portions will remain in SPM.
Granularity of arrays and function calls.

Dynamic scratch-pad optimizations
Make a copy of distant memory before a tile or before a tile strip.
Work at the granularity of array sections = approximation.
Only “regular” inter-tile reuse (null space of affine functions or shifts).
Apparently, no pipelining/overlapping (except in RStream).

ý But hypotheses and how “writes” are handled not clear.
15 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Optimizing reuse of remote accesses
Algorithmic solution based on parametric linear programming
Illustrating example

Outline

1 Context and motivations (see ASAP’10 paper)

2 Communicating processes and “double buffering”

3 Kernel off-loading with polyhedral techniques
Optimizing reuse of remote accesses
Algorithmic solution based on parametric linear programming
Illustrating example

16 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Optimizing reuse of remote accesses
Algorithmic solution based on parametric linear programming
Illustrating example

What do we put in Load(T) and Store(T)?

Minimal dependence structure:
Tiles

Computes

Loads

Stores

T − 2 T − 1 T + 1 T + 2T

Goal: make computations as local as possible.

Reuse local data: intra and inter-tile reuse in a tile strip.
Do not store in external memory after each write.
Minimize live-ranges in local memory.

Two important consequences:

Live-ranges can be all different: bounding box not enough.
External memory not up-to-date: over-loading unsafe.

17 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Optimizing reuse of remote accesses
Algorithmic solution based on parametric linear programming
Illustrating example

General specification

Define
Load(T ): data loaded from DDR just before executing tile T .
Store(T ): data stored to DDR just after T .

In(T ): data read before being written in the tile T .
Out(T ): data written by the tile T .

In(T ): possibly read before being written, over-approximation of In(T ).
Out(T ): data possibly written, over-approximation of Out(T ).
Out(T ): data provably written, under-approximation of Out(T ).

Can we give conditions for Load(T ) and Store(T ) to be valid?
How to compute then? Can they be over-approximated too?

Extreme solutions
For all T , Load(T ) = In(T ), Store(T ) = Out(T ) ý no inter-tile reuse.
All Load(T ) empty except first one ý no pipelining and overlapping.

18 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Optimizing reuse of remote accesses
Algorithmic solution based on parametric linear programming
Illustrating example

Formalization of valid, exact, and approximated load

Valid load

(i) Load at least what is needed but not previously produced:

In(T ) \Out(t < T ) ⊆ Load(t ≤ T )

(ii) Do not overwrite locally-defined data:

Out(t < T ) ∩ Load(T ) = ∅

In In InOut Out Out

LD

LD
LD

T−2 T−1 T Tiles

A
rr

ay
 a

d
d

re
ss

es

19 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Optimizing reuse of remote accesses
Algorithmic solution based on parametric linear programming
Illustrating example

Formalization of valid, exact, and approximated load

Exact load

(i) Load exactly what is needed but not previously produced:

∪t≤Tmax

{
In(t) \Out(t ′ < t)

}
=Load(t ≤ Tmax)

(ii) All loads should be disjoint (no redundant transfers):

Load(T ) ∩ Load(T ′) = ∅,∀T 6= T ′

In In InOut Out Out

LD

LD

T−2 T−1 T Tiles

A
rr

ay
 a

d
d

re
ss

es

19 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Optimizing reuse of remote accesses
Algorithmic solution based on parametric linear programming
Illustrating example

Formalization of valid, exact, and approximated load

Valid approximated load

(i) Load at least the exact amount of data:

In(T ) \Out(t < T ) ⊆ Load(t ≤ T )

(ii) Do not overwrite possibly locally-defined data:

Out(t < T ) ∩ Load(T ) = ∅

In In InOut Out Out
T−2 T−1 T Tiles

A
rr

ay
 a

d
d

re
ss

es

Out

LD
LD

LD

LD

19 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Optimizing reuse of remote accesses
Algorithmic solution based on parametric linear programming
Illustrating example

Formalization of valid, exact, and approximated load

Valid approximated load

(i) Load at least the exact amount of data:

In(T ) \Out(t < T ) ⊆ Load(t ≤ T )

(ii) Do not overwrite possibly locally-defined data:

Out(t < T ) ∩ Load(T ) = ∅

In In InOut Out Out
T−2 T−1 T Tiles

A
rr

ay
 a

d
d

re
ss

es

Out

LD
LD

LD

LDLD

19 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Optimizing reuse of remote accesses
Algorithmic solution based on parametric linear programming
Illustrating example

Subtleties due to writes and live-ranges

Main conclusions:

If a data is locally written, be careful with data over-loading.

If a data may be locally written, be careful when over-loading
and when over-writing back to the DDR.

Many schemes are possible: to minimize live-ranges, load as
late as possible and store back as soon as possible.

To avoid the problems due to over-loading and over-writing,
two solutions:

Design an exact scheme.
Deal with approximations thanks to pre-loading.

Live-range splitting (i.e., re-loads) may be useful. This has
still to be explored.

20 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Optimizing reuse of remote accesses
Algorithmic solution based on parametric linear programming
Illustrating example

Handling approximations of data accesses

Exact situation
Store(T ) = Out(T ) \Out(t > T ) = LastWrite ∩ T
Load(T ) = In(T ) \ {In(t < T ) ∪Out(t < T )} = FirstReadBeforeWrite ∩ T

Possible solution with Out(T ) \Out(t > T ) ⊆ Store(T )
In

′
(T ) = In(T ) ∪ (Store(T ) \Out(T )) (all data that are “read”)

Ra(T ) = In
′
(T ) \Out(t < T ) (all data that need a remote access)

Load(T ) =
(
In

′
(T ) ∪ (Out(T ) ∩ Ra(t > T ))

)
\
(
In

′
(t < T ) ∪Out(t < T )

)
Intuitively, to reduce live-ranges, load ALAP and store ASAP.

Store x just after T if x is never written after T , i.e., x /∈ Out(t > T ).

Preload x if x may be written, i.e., x ∈ Out(t ≤ Tmax) \Out(t ≤ Tmax).

Load a value x always before it may be written, i.e., x /∈ Out(t < T ).

21 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Optimizing reuse of remote accesses
Algorithmic solution based on parametric linear programming
Illustrating example

Handling approximations of data accesses

Exact situation
Store(T ) = Out(T ) \Out(t > T ) = LastWrite ∩ T
Load(T ) = In(T ) \ {In(t < T ) ∪Out(t < T )} = FirstReadBeforeWrite ∩ T

Approximated situation

Store(T ) = Out(T ) \Out(t > T )

* may write wrong values in DDR

Load(T ) = In(T ) \
{
In(t < T ) ∪Out(t < T )

}

* may forget to load from DDR

Possible solution with Out(T ) \Out(t > T ) ⊆ Store(T )
In

′
(T ) = In(T ) ∪ (Store(T ) \Out(T )) (all data that are “read”)

Ra(T ) = In
′
(T ) \Out(t < T ) (all data that need a remote access)

Load(T ) =
(
In

′
(T ) ∪ (Out(T ) ∩ Ra(t > T ))

)
\
(
In

′
(t < T ) ∪Out(t < T )

)
Intuitively, to reduce live-ranges, load ALAP and store ASAP.

Store x just after T if x is never written after T , i.e., x /∈ Out(t > T ).

Preload x if x may be written, i.e., x ∈ Out(t ≤ Tmax) \Out(t ≤ Tmax).

Load a value x always before it may be written, i.e., x /∈ Out(t < T ).

21 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Optimizing reuse of remote accesses
Algorithmic solution based on parametric linear programming
Illustrating example

Handling approximations of data accesses

Exact situation
Store(T ) = Out(T ) \Out(t > T ) = LastWrite ∩ T
Load(T ) = In(T ) \ {In(t < T ) ∪Out(t < T )} = FirstReadBeforeWrite ∩ T

Approximated situation NO!

Store(T ) = Out(T ) \Out(t > T ) * may write wrong values in DDR
Load(T ) = In(T ) \

{
In(t < T ) ∪Out(t < T )

}
* may forget to load from DDR

Possible solution with Out(T ) \Out(t > T ) ⊆ Store(T )
In

′
(T ) = In(T ) ∪ (Store(T ) \Out(T )) (all data that are “read”)

Ra(T ) = In
′
(T ) \Out(t < T ) (all data that need a remote access)

Load(T ) =
(
In

′
(T ) ∪ (Out(T ) ∩ Ra(t > T ))

)
\
(
In

′
(t < T ) ∪Out(t < T )

)
Intuitively, to reduce live-ranges, load ALAP and store ASAP.

Store x just after T if x is never written after T , i.e., x /∈ Out(t > T ).

Preload x if x may be written, i.e., x ∈ Out(t ≤ Tmax) \Out(t ≤ Tmax).

Load a value x always before it may be written, i.e., x /∈ Out(t < T ).

21 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Optimizing reuse of remote accesses
Algorithmic solution based on parametric linear programming
Illustrating example

Handling approximations of data accesses

Exact situation
Store(T ) = Out(T ) \Out(t > T ) = LastWrite ∩ T
Load(T ) = In(T ) \ {In(t < T ) ∪Out(t < T )} = FirstReadBeforeWrite ∩ T

Possible solution with Out(T ) \Out(t > T ) ⊆ Store(T )
In

′
(T ) = In(T ) ∪ (Store(T ) \Out(T )) (all data that are “read”)

Ra(T ) = In
′
(T ) \Out(t < T ) (all data that need a remote access)

Load(T ) =
(
In

′
(T ) ∪ (Out(T ) ∩ Ra(t > T ))

)
\
(
In

′
(t < T ) ∪Out(t < T )

)

Intuitively, to reduce live-ranges, load ALAP and store ASAP.

Store x just after T if x is never written after T , i.e., x /∈ Out(t > T ).

Preload x if x may be written, i.e., x ∈ Out(t ≤ Tmax) \Out(t ≤ Tmax).

Load a value x always before it may be written, i.e., x /∈ Out(t < T ).

21 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Optimizing reuse of remote accesses
Algorithmic solution based on parametric linear programming
Illustrating example

Handling approximations of data accesses

Exact situation
Store(T ) = Out(T ) \Out(t > T ) = LastWrite ∩ T
Load(T ) = In(T ) \ {In(t < T ) ∪Out(t < T )} = FirstReadBeforeWrite ∩ T

Possible solution with Out(T ) \Out(t > T ) ⊆ Store(T )
In

′
(T ) = In(T ) ∪ (Store(T ) \Out(T )) (all data that are “read”)

Ra(T ) = In
′
(T ) \Out(t < T ) (all data that need a remote access)

Load(T ) =
(
In

′
(T ) ∪ (Out(T ) ∩ Ra(t > T ))

)
\
(
In

′
(t < T ) ∪Out(t < T )

)
Intuitively, to reduce live-ranges, load ALAP and store ASAP.

Store x just after T if x is never written after T , i.e., x /∈ Out(t > T ).

Preload x if x may be written, i.e., x ∈ Out(t ≤ Tmax) \Out(t ≤ Tmax).

Load a value x always before it may be written, i.e., x /∈ Out(t < T ).

21 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Optimizing reuse of remote accesses
Algorithmic solution based on parametric linear programming
Illustrating example

Quast manipulations, simplifications, and inversions

For each array c , consider an array element c(~m).

Compute 3 quasts, parameterized by ~m and outer tile indices:

In(~m) = min{T | ~m ∈ In(T )} (Note: = +∞ if set empty).
Out(~m) = min{T | ~m ∈ Out(T )}.
Out(~m) = min{T | ~m ∈ Out(T )}.

Combine them to get T (~m) = min(Out(~m),min(Out(~m), In(~m))),
with just a slight change: If min(Out(~m), In(~m)) = Out(~m),
replace by the leaf by −∞, i.e., no need to load. Then:

if T (~m) 6= ±∞, load ~m just before tile T (~m).

Invert T (~m) into ~m(T ) (~m is now a variable, T a parameter),
add the constraints for tile T , this gives Load(T ) as a union
of polytopes (or possibly LBLs) parameterized by tile indices.

22 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Optimizing reuse of remote accesses
Algorithmic solution based on parametric linear programming
Illustrating example

Quast manipulations, simplifications, and inversions

For each array c , consider an array element c(~m).

Compute 3 quasts, parameterized by ~m and outer tile indices:

In(~m) = min{T | ~m ∈ In(T )} (Note: = +∞ if set empty).
Out(~m) = min{T | ~m ∈ Out(T )}.
Out(~m) = min{T | ~m ∈ Out(T )}.

Combine them to get T (~m) = min(Out(~m),min(Out(~m), In(~m))),
with just a slight change: If min(Out(~m), In(~m)) = Out(~m),
replace by the leaf by −∞, i.e., no need to load. Then:

if T (~m) 6= ±∞, load ~m just before tile T (~m).

Invert T (~m) into ~m(T ) (~m is now a variable, T a parameter),
add the constraints for tile T , this gives Load(T ) as a union
of polytopes (or possibly LBLs) parameterized by tile indices.

22 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Optimizing reuse of remote accesses
Algorithmic solution based on parametric linear programming
Illustrating example

Quast manipulations, simplifications, and inversions

For each array c , consider an array element c(~m).

Compute 3 quasts, parameterized by ~m and outer tile indices:

In(~m) = min{T | ~m ∈ In(T )} (Note: = +∞ if set empty).
Out(~m) = min{T | ~m ∈ Out(T )}.
Out(~m) = min{T | ~m ∈ Out(T )}.

Combine them to get T (~m) = min(Out(~m),min(Out(~m), In(~m))),
with just a slight change: If min(Out(~m), In(~m)) = Out(~m),
replace by the leaf by −∞, i.e., no need to load. Then:

if T (~m) 6= ±∞, load ~m just before tile T (~m).

Invert T (~m) into ~m(T ) (~m is now a variable, T a parameter),
add the constraints for tile T , this gives Load(T ) as a union
of polytopes (or possibly LBLs) parameterized by tile indices.

22 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Optimizing reuse of remote accesses
Algorithmic solution based on parametric linear programming
Illustrating example

Back to polynomial example
j

i

phase 2
Double buffering

phase 1
Double buffering

Last write (c)

First read (c) First reads of c (horizontal tiling).
System to be solved by PIP:

ii = N − j , jj = i , i + j = m
0 ≤ i ≤ N, 0 ≤ j ≤ N
bI ≤ ii ≤ b(I + 1)− 1
bJ ≤ jj ≤ b(J + 1)− 1

blue=constant (10), red=parameter

23 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Optimizing reuse of remote accesses
Algorithmic solution based on parametric linear programming
Illustrating example

Back to polynomial example
j

i

phase 2
Double buffering

phase 1
Double buffering

Last write (c)

First read (c) First reads of c (horizontal tiling).
System to be solved by PIP:

ii = N − j , jj = i , i + j = m
0 ≤ i ≤ N, 0 ≤ j ≤ N
bI ≤ ii ≤ b(I + 1)− 1
bJ ≤ jj ≤ b(J + 1)− 1

blue=constant (10), red=parameter

if (−10I + N −m ≥ 0)
if (10I − N + m + 9 ≥ 0) /* vertical band of elements, first tile */

(J, ii , jj , i , j) = (0,N −m, 0, 0,m)
else ⊥ /* means undefined */

else
if (−10I + 2N −m ≥ 0)

if (−10I + N −m + 9 ≥ 0) /* horizontal band, first tile */
(J, ii , jj , i , j) = (0, 10I , 10I − N + m, 10I − N + m,N − 10I )

else with k = bN+9m+9
10

c /* generic horizontal case */
(J, ii , jj , i , j) = (I + m − k, 10I , 10I − N + m, 10I − N + m,N − 10I )

else ⊥ /* undefined */

23 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Optimizing reuse of remote accesses
Algorithmic solution based on parametric linear programming
Illustrating example

Back to polynomial example
j

i

phase 2
Double buffering

phase 1
Double buffering

Last write (c)

First read (c) First reads of c (horizontal tiling).
System to be solved by PIP:

ii = N − j , jj = i , i + j = m
0 ≤ i ≤ N, 0 ≤ j ≤ N
bI ≤ ii ≤ b(I + 1)− 1
bJ ≤ jj ≤ b(J + 1)− 1

blue=constant (10), red=parameter

if (−10I + N −m ≥ 0)
if (10I − N + m + 9 ≥ 0) /* vertical band of elements, first tile */

(i , j) = (0,m)
else ⊥

else
if (−10I + 2N −m ≥ 0)

if (−10I + N −m + 9 ≥ 0) /* horizontal band, first tile */
(i , j) = (10I − N + m,N − 10I )

else with k = bN+9m+9
10

c /* generic horizontal case */
(i , j) = (10I − N + m,N − 10I )

else ⊥ /* means undefined */

23 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Optimizing reuse of remote accesses
Algorithmic solution based on parametric linear programming
Illustrating example

Back to polynomial example
j

i

phase 2
Double buffering

phase 1
Double buffering

Last write (c)

First read (c) First reads of c (horizontal tiling).
System to be solved by PIP:

ii = N − j , jj = i , i + j = m
0 ≤ i ≤ N, 0 ≤ j ≤ N
bI ≤ ii ≤ b(I + 1)− 1
bJ ≤ jj ≤ b(J + 1)− 1

blue=constant (10), red=parameter

if (−10I + N −m ≥ 0)
if (10I − N + m + 9 ≥ 0)

(i , j) = (0,m) /* vertical portion of c */
else ⊥

else
if (−10I + 2N −m ≥ 0)

(i , j) = (10I − N + m,N − 10I ) /* horizontal portion of c */
else ⊥ /* means undefined */

This gives the array elements whose first access is a read:

{m | max(0,N − 10I − 9) ≤ m ≤ N − 10I} ∪ {m | N − 10I + 1 ≤ m ≤ 2N − 10I}

23 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Optimizing reuse of remote accesses
Algorithmic solution based on parametric linear programming
Illustrating example

Back to polynomial example
j

i

phase 2
Double buffering

phase 1
Double buffering

Last write (c)

First read (c) First reads of c (horizontal tiling).
System to be solved by PIP:

ii = N − j , jj = i , i + j = m
0 ≤ i ≤ N, 0 ≤ j ≤ N
bI ≤ ii ≤ b(I + 1)− 1
bJ ≤ jj ≤ b(J + 1)− 1

blue=constant (10), red=parameter

{m | max(0,N−10I −9) ≤ m ≤ N−10I}∪{m | N−10I + 1 ≤ m ≤ 2N−10I}
First operation that accesses m:

FirstOpRead(m) = {(i , j) | (i , j) = (0,m), max(0,N − 10I − 9) ≤ m ≤ N − 10I}
∪ {(i , j) | (i , j) = (10I − N + m,N − 10I ), N − 10I + 1 ≤ m ≤ 2N − 10I}

Introduce tile T and invert to get the data to be loaded at T :

FirstReadInTile(T ) = {m | max(0,N − 10I − 9) ≤ m ≤ N − 10I , T = 0}
∪ {m | max(1, 10T ) ≤ m + 10I − N ≤ min(N, 10T + 9)}

23 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Optimizing reuse of remote accesses
Algorithmic solution based on parametric linear programming
Illustrating example

Conclusion: contributions

Bring HPC compilation tools to HLS of hardware accelerators.

To our knowledge, first process to automate communications
and integrate FPGA hardware accelerators, entirely at C level.

Identifies important needs for synchronization mechanisms at
source level and for better pragmas (e.g., restrict for pairs).

Quite general analysis and transformations to pipeline kernel
off-loading and optimize remote accesses (GPGPUs? Other?).

Starting point for using HLS tools as back-end compilers.

24 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Optimizing reuse of remote accesses
Algorithmic solution based on parametric linear programming
Illustrating example

Conclusion: perspectives

Many many opportunities for improvements.

Design more efficient Quast simplifications, compare with ISL.

Extend to parametric tile sizes.

Implement approximations and live-range splitting.

Explore link between coarse-grain schedule and memory size.

Design more domain-specific code generation.

Define compilation directives at C level for hardware synthesis.

Include parallelism and multi-process accelerators

Design customized memories and inter-processes buffers.

Exploit schedule with slacks for GALS pipelined designs.

Design a streaming language with shared memory for
inter-process communication.

. . .

Thank you for your attention!

25 / 25



Context and motivations (see ASAP’10 paper)
Communicating processes and “double buffering”

Kernel off-loading with polyhedral techniques

Optimizing reuse of remote accesses
Algorithmic solution based on parametric linear programming
Illustrating example

Conclusion: perspectives

Many many opportunities for improvements.

Design more efficient Quast simplifications, compare with ISL.

Extend to parametric tile sizes.

Implement approximations and live-range splitting.

Explore link between coarse-grain schedule and memory size.

Design more domain-specific code generation.

Define compilation directives at C level for hardware synthesis.

Include parallelism and multi-process accelerators

Design customized memories and inter-processes buffers.

Exploit schedule with slacks for GALS pipelined designs.

Design a streaming language with shared memory for
inter-process communication.

. . . Thank you for your attention!
25 / 25


	Context and motivations (see ASAP'10 paper)
	HLS tools, interfaces, and communications
	Optimizing DDR accesses

	Communicating processes and ``double buffering''
	Loop tiling and the polytope model
	Overview of the compilation scheme
	Communication coalescing: related work

	Kernel off-loading with polyhedral techniques
	Optimizing reuse of remote accesses
	Algorithmic solution based on parametric linear programming
	Illustrating example


