
Definitions and Motivations
The Basic Algorithm

A Piecewise Extension
Conclusions

Approximating the Transitive Closure of a
Boolean Affine Relation

Paul Feautrier

ENS de Lyon
Paul.Feautrier@ens-lyon.fr

January 22, 2012

1 / 18



Definitions and Motivations
The Basic Algorithm

A Piecewise Extension
Conclusions

Definitions and Motivations

The Basic Algorithm
Characterization
Frakas Lemma
Comparison to the ACI Method

A Piecewise Extension

Conclusions

2 / 18



Definitions and Motivations
The Basic Algorithm

A Piecewise Extension
Conclusions

Definitions

I A relation on a set E is a subset of E × E
I A Boolean expression on INd or ZZd is a Boolean combination

of affine inequalities
∑d

i=1 ai .xi + x0 ≥ 0 or∑d
i=1 ai .xi + x0 > 0 on d variables.

I A Boolean affine relation is a Boolean affine expression in
which one has distinguished input and ouput variables, e.g.
with primes

I Relation union, relation composition
(R ◦ S)(x , y) = ∃z : R(x , z) & S(z , y).

I Transitive closure of R: the smallest reflexive and transitive
relation which includes R:

R+ = R ∪ R2 ∪ . . . ∪ Rk . . . ; R∗ = I ∪ R+

R1 = R ; Rn+1 = R ◦ Rn

3 / 18



Definitions and Motivations
The Basic Algorithm

A Piecewise Extension
Conclusions

Motivation

Boolean affine relations are ubiquitous in static program analysis:

I loop invariants

I “transformers”

I dependences and value-based dependences

Transitive closures are useful in many cases:

I program verification and termination

I loop scheduling (Pugh)

I communication-free parallelism

4 / 18



Definitions and Motivations
The Basic Algorithm

A Piecewise Extension
Conclusions

Over-Approximations

Unfortunately, the transitive closure of a Boolean affine relation is
not always Boolean affine:

The transitive closure of
(x ′ = x + y) & (y ′ = y) & (i ′ = i + 1) is:

(i ′ > i) & (x ′ − x = y .(i ′ − i)) & y ′ = y),

which is not affine.

One has to resort to over- or under-approximations. This talk
concentrates on over-approximations.
A common over-approximation is to ignore the fact that variables
may be integral.

5 / 18



Definitions and Motivations
The Basic Algorithm

A Piecewise Extension
Conclusions

Related Works

I Kelly, Pugh et. al. introduced the idea of d-relations, i.e.
relations on x ′ − x , which can be summed to build the
transitive closure

I Ancourt, Coelho and Irigoin generalized the idea by
introducing the distance set: (∆R)(d) = ∃x : R(x ; x + d).

I Sankaranarayanan et. al. applied Farkas lemma to the
conditions R ⊆ R+ and R ◦ R+ ⊆ R+ but the result was a
bilinear system, to be solved by quantifier elimination or
rewriting.

Kelly, Pugh et. al.: LCPC’95
Ancourt, Coelho, Irigoin: NSAD’2010

Sankaranarayanan, Sipma, Manna: SAS’2004

6 / 18



Definitions and Motivations
The Basic Algorithm

A Piecewise Extension
Conclusions

Characterization
Frakas Lemma
Comparison to the ACI Method

Characterization of Reflexive and Transitive Relations

I If R is reflexive and transitive, then
≈R≡ {x , x ′ | R(x ; x ′) & R(x ′; x)} is an equivalence relation

I The quotient relation R/ ≈R is an order

I Hence R can be written as R(x ; x ′) ≡ fR(x) ≺R fR(x ′) where
fR is the mapping from the universe to the equivalence classes
of ≈R , and ≺ is the quotient order.

For finite graphs, the equivalence classes are the strongly connected
components, and ≺R is the transitive closure of the reduced graph.

7 / 18



Definitions and Motivations
The Basic Algorithm

A Piecewise Extension
Conclusions

Characterization
Frakas Lemma
Comparison to the ACI Method

Application, I

Select a shape for f – for instance, a linear function f (x) = f.x –
and an order – for instance the ordinary order ≤ – and solve the
constraint:

R(x ; x ′)⇒ f.x ≤ f.x ′

I The resulting relation S(x ; x ′) ≡ f.x ≤ f.x ′ is an over
approximation of R∗.

I An improved result is S(x ; x ′) ∩ (D(R)× C(R)), the domain
and codomain of R

I If R is Boolean affine, then the constraint can be solved using
Farkas lemma.

8 / 18



Definitions and Motivations
The Basic Algorithm

A Piecewise Extension
Conclusions

Characterization
Frakas Lemma
Comparison to the ACI Method

Farkas Lemma

If the system of constraints Ax + b ≥ 0 is feasible, then:

∀x .(Ax + b ≥ 0⇒ c.x + d ≥ 0) ≡ ∃Λ ≥ 0 : c = ΛA & d ≥ Λb

I If R is convex: R(x ; x ′) ≡ Ax + A′x ′ + a ≥ 0, then application
of Farkas lemma gives the system:

ΛA = −f, ΛA′ = f, Λa ≤ 0.

I If R is non convex, apply Farkas to each clause in its DNF.
The result is a system of inequalities in positive unknowns.

9 / 18



Definitions and Motivations
The Basic Algorithm

A Piecewise Extension
Conclusions

Characterization
Frakas Lemma
Comparison to the ACI Method

Application, II

I Eliminate Λ (the Farkas multipliers) independently for each
subsystem

I The resulting system for f is homogeneous and hence defines
a cone

I Let r1, . . . , rn be the rays of this cone. Each ray ri define a
valid function fi (x) = ri .x ; all other vectors in the cone define
redundant functions.

I The resulting approximation to R∗ is:

S(x ; x ′) ≡
n∧

i=1

fi (x) ≤ fi (x ′).

I ≺ is the Cartesian product order ≤n.

10 / 18



Definitions and Motivations
The Basic Algorithm

A Piecewise Extension
Conclusions

Characterization
Frakas Lemma
Comparison to the ACI Method

An Example

Consider the following relation from Sankaranarayanan et. al.:

(x ′ = x + 2y & y ′ = 1− y) ∨ (x ′ = x + 1 & y ′ = y + 2)

Let f (x) = f1x + f2y be the unknown.

I The first clause gives the constraint f1 = f2 ≥ 0

I The second clause gives the constraint f1 + 2f2 ≥ 0

I One can take f1 = f2 = 1 and the transitive closure is
x + y ≤ x ′ + y ′.

11 / 18



Definitions and Motivations
The Basic Algorithm

A Piecewise Extension
Conclusions

Characterization
Frakas Lemma
Comparison to the ACI Method

Relation to the ACI method

Starting from:

ΛA = −f, ΛA′ = f, Λa ≤ 0.

one can eliminate f instead of Λ, giving Λ(A + A′) = 0
In the definition of the distance set

(∆R)(d) = ∃x : Ax + A′(x + d) + a ≥ 0

elimination of x means finding – e.g. by Fourier-Motzkin – a
positive matrix L such that L(A + A′) = 0. L can be chosen equal
to Λ. If L.a ≤ 0 the ACI method gives LA′(x ′ − x) ≥ −La.
The basic algorithm gives f = ΛA′ and ΛA′(x ′ − x) ≥ 0.
The two methods gives equivalent results, one giving an
approximation for R+ and the other for R∗.

12 / 18



Definitions and Motivations
The Basic Algorithm

A Piecewise Extension
Conclusions

Piecewise Affine Extension

When the number of clauses increases, the method fails (f (x) = 0)
since the number of constraints increases but not the number of
unknowns.
An example:

(x < 100 & x ′ = x + 1) ∨ (x ≥ 100 & x ′ = 0).

One possible solution: take f as a piecewise affine function:

f (x) = if σ(x) ≥ 0 then g(x) else h(x),

where σ, the split function, is taken to be affine:

σ(x) = σ.x + σ0

13 / 18



Definitions and Motivations
The Basic Algorithm

A Piecewise Extension
Conclusions

Expansion

The hyperplanes σ(x) ≥ 0 and σ(x ′) ≥ 0 split E × E into 4
regions, in which Farkas lemma can be applied, giving 4 systems of
constraints. For instance:

R(x ; x ′) & σ(x) ≥ 0 & σ(x ′) ≥ 0⇒ g(x) ≤ g(x ′).

If σ is known, the systems are still linear, and can be solved as
above.

14 / 18



Definitions and Motivations
The Basic Algorithm

A Piecewise Extension
Conclusions

Another Example

For:

R(x ; x ′) ≡ (x < 100 & x ′ = x + 1) ∨ (x ≥ 100 & x ′ = 0).

and taking σ(x) = x , one obtain (after simplification):

R∗(x ; x ′) ≡ (x = x ′) ∨ ((x ′ < 101) & ((x ≤ x ′) ∨ (0 ≤ x ′)).

15 / 18



Definitions and Motivations
The Basic Algorithm

A Piecewise Extension
Conclusions

How to Choose the Split

I Note that σ(x) and a.σ(x) gives equivalent systems, whatever
the sign of the constant multiplier a

I By manipulating the resulting systems, one can prove that for
each clause in the DNF of R, either σ has a zero Farkas
multiplier, or σ must belong to the cone generated by the
rows of A + A′.

I There are only a finite number of possibilities, which can be
explored systematically. When the homogeneous part σ.x is
selected, one obtain a linear system for σ0.

I For the exemple above, which is one-dimensional, there is only
one possibility, σ = 1, and then one can show that σ0 must be
null.

16 / 18



Definitions and Motivations
The Basic Algorithm

A Piecewise Extension
Conclusions

Implementation

I The method has been implemented in Java, using PIP and
the Polylib

I The algorithm for choosing σ is not implemented yet, and the
user must supply it if necessary

17 / 18



Definitions and Motivations
The Basic Algorithm

A Piecewise Extension
Conclusions

Conclusion and Future Work

I Complete the implementation (choice of σ, detection of
special cases)

I Preprocessing of R: change of variables, grouping, adding or
removing variables ...

I Can one have more than one split (exponential complexity)

I Explore other forms for the function f (max and min) and
other orders (lexicographic orders)

I Explore other representations of the transitive closure

18 / 18


	Definitions and Motivations
	The Basic Algorithm
	Characterization
	Frakas Lemma
	Comparison to the ACI Method

	A Piecewise Extension
	Conclusions

