Approximating the Transitive Closure of a
Boolean Affine Relation

Paul Feautrier

ENS de Lyon
Paul.Feautrier@ens-lyon.fr

January 22, 2012

Université Claude Bernard|((Us))Lyon 1

1/18



Definitions and Motivations

The Basic Algorithm
Characterization
Frakas Lemma
Comparison to the ACl Method

A Piecewise Extension

Conclusions

2/18



Definitions and Motivations

Definitions

v

v

A relation on a set E is a subset of E x E

A Boolean expression on IN? or Z is a Boolean combination
of affine inequalities 27:1 a;.x;+xp >0 or

27:1 a;j.x;i +xg > 0 on d variables.

A Boolean affine relation is a Boolean affine expression in
which one has distinguished input and ouput variables, e.g.
with primes

Relation union, relation composition
(RoS)(x,y)=3z:R(x,z) & S(z,y).

Transitive closure of R: the smallest reflexive and transitive
relation which includes R:

Rt =RUR?*U...URK... © R*=JUR?t
R'=R ; R"™'=RoR"

3/18



Definitions and Motivations

Motivation

Boolean affine relations are ubiquitous in static program analysis:
> loop invariants
> “transformers”
» dependences and value-based dependences
Transitive closures are useful in many cases:
» program verification and termination
» loop scheduling (Pugh)

» communication-free parallelism

4/18



Definitions and Motivations

Over-Approximations

Unfortunately, the transitive closure of a Boolean affine relation is
not always Boolean affine:

The transitive closure of
X =x+y) & (Y =y) & ("'=i+1)is:
(i"'>0) & (X' —x=y.(i"'=1) & y =y),

which is not affine.

One has to resort to over- or under-approximations. This talk
concentrates on over-approximations.

A common over-approximation is to ignore the fact that variables
may be integral.

5/18



Definitions and Motivations

Related Works

» Kelly, Pugh et. al. introduced the idea of d-relations, i.e.
relations on x’ — x, which can be summed to build the
transitive closure

» Ancourt, Coelho and Irigoin generalized the idea by
introducing the distance set: (AR)(d) = 3x : R(x; x + d).

» Sankaranarayanan et. al. applied Farkas lemma to the
conditions R C Rt and Ro Rt C R* but the result was a
bilinear system, to be solved by quantifier elimination or
rewriting.

Kelly, Pugh et. al.: LCPC'95
Ancourt, Coelho, Irigoin: NSAD'2010
Sankaranarayanan, Sipma, Manna: SAS'2004

6/18



Characterization
Frakas Lemma
Comparison to the ACl Method

The Basic Algorithm

Characterization of Reflexive and Transitive Relations

» If R is reflexive and transitive, then
~r= {x,x' | R(x;x") & R(x';x)} is an equivalence relation
» The quotient relation R/ ~g is an order

» Hence R can be written as R(x; x") = fr(x) <gr fr(x") where
fr is the mapping from the universe to the equivalence classes
of ~g, and < is the quotient order.

For finite graphs, the equivalence classes are the strongly connected
components, and <g is the transitive closure of the reduced graph.

7/18



Characterization
Frakas Lemma
Comparison to the ACl Method

The Basic Algorithm

Application, |

Select a shape for f — for instance, a linear function f(x) = f.x —
and an order — for instance the ordinary order < — and solve the
constraint:

R(x;x") = f.x < f.x

» The resulting relation S(x;x") = f.x < f.x" is an over
approximation of R*.

» An improved result is S(x; x") N (D(R) x C(R)), the domain
and codomain of R

» If R is Boolean affine, then the constraint can be solved using
Farkas lemma.

8/18



Characterization
Frakas Lemma
Comparison to the ACl Method

The Basic Algorithm

Farkas Lemma

If the system of constraints Ax + b > 0 is feasible, then:

Vx.(Ax+b>0=cx+d>0)=3A>0:c=NA & d>Ab

» If Ris convex: R(x;x") = Ax+ A'x' +a > 0, then application
of Farkas lemma gives the system:

AN =—f, NA' =f, Aa<0.
» If R is non convex, apply Farkas to each clause in its DNF.

The result is a system of inequalities in positive unknowns.

9/18



Characterization
Frakas Lemma
Comparison to the ACl Method

The Basic Algorithm

Application, Il

v

Eliminate A (the Farkas multipliers) independently for each
subsystem

The resulting system for f is homogeneous and hence defines
a cone

Let r1,..., r, be the rays of this cone. Each ray r; define a
valid function fj(x) = r;.x; all other vectors in the cone define
redundant functions.

The resulting approximation to R* is:

< is the Cartesian product order <".

10/18



Characterization
Frakas Lemma
Comparison to the ACl Method

The Basic Algorithm

An Example

Consider the following relation from Sankaranarayanan et. al.:
(X=x+2y & y=1-y) V(X' =x+1 & y' =y +2)

Let f(x) = fix + foy be the unknown.

» The first clause gives the constraint 1 = f >0
» The second clause gives the constraint f; + 2f, > 0

» One can take f; = f, = 1 and the transitive closure is
x+y<x+y.

11/18



Characterization
Frakas Lemma
Comparison to the ACl Method

The Basic Algorithm

Relation to the AC| method

Starting from:
AN =—f N =f, Aa<0.

one can eliminate f instead of A, giving A(A+ A’) =0
In the definition of the distance set

(AR)(d)=3x: Ax+A(x+d)+a>0

elimination of x means finding — e.g. by Fourier-Motzkin — a
positive matrix L such that L(A+ A’) = 0. L can be chosen equal
to A. If L.a < 0 the ACI method gives LA'(x' — x) > —La.

The basic algorithm gives f = AA" and AA'(x’ — x) > 0.

The two methods gives equivalent results, one giving an
approximation for Rt and the other for R*.

12/18



A Piecewise Extension

Piecewise Affine Extension

When the number of clauses increases, the method fails (f(x) = 0)
since the number of constraints increases but not the number of
unknowns.

An example:

(x <100 & X' =x+1)V(x>100 & x' =0).
One possible solution: take f as a piecewise affine function:
f(x) = if o(x) > Othen g(x) else h(x),
where o, the split function, is taken to be affine:

o(x) =o0.x+ 09

13/18



A Piecewise Extension

Expansion

The hyperplanes o(x) > 0 and o(x) > 0 split E x E into 4
regions, in which Farkas lemma can be applied, giving 4 systems of
constraints. For instance:

R(x;x") & o(x) >0 & o(x') > 0= g(x) < g(x).

If o is known, the systems are still linear, and can be solved as
above.

14/18



A Piecewise Extension

Another Example

For:
R(x;x')=(x <100 & x'=x+1)V(x>100 & x' =0).

and taking o(x) = x, one obtain (after simplification):

R'(x;xX)=(x=x)V((xX <101) & ((x <x')Vv(0<X)).

15/18



A Piecewise Extension

How to Choose the Split

» Note that o(x) and a.o(x) gives equivalent systems, whatever
the sign of the constant multiplier a

» By manipulating the resulting systems, one can prove that for
each clause in the DNF of R, either o has a zero Farkas
multiplier, or ¢ must belong to the cone generated by the
rows of A+ A’

> There are only a finite number of possibilities, which can be
explored systematically. When the homogeneous part o.x is
selected, one obtain a linear system for og.

» For the exemple above, which is one-dimensional, there is only
one possibility, o = 1, and then one can show that g must be
null.

16/18



Conclusions

Implementation

» The method has been implemented in Java, using PIP and
the Polylib

» The algorithm for choosing ¢ is not implemented yet, and the
user must supply it if necessary

17/18



Conclusions

Conclusion and Future Work

» Complete the implementation (choice of o, detection of
special cases)

» Preprocessing of R: change of variables, grouping, adding or
removing variables ...

» Can one have more than one split (exponential complexity)

» Explore other forms for the function f (max and min) and
other orders (lexicographic orders)

» Explore other representations of the transitive closure

18/18



	Definitions and Motivations
	The Basic Algorithm
	Characterization
	Frakas Lemma
	Comparison to the ACI Method

	A Piecewise Extension
	Conclusions

