Approximating the Transitive Closure of a Boolean Affine Relation

Paul Feautrier
ENS de Lyon
Paul.Feautrier@ens-lyon.fr

January 22, 2012

Cnuáa

Lip
$\mathrm{Crs}_{5}=$
Universite Claude Bernard

Definitions and Motivations

The Basic Algorithm
Characterization
Frakas Lemma
Comparison to the ACI Method

A Piecewise Extension

Conclusions

Definitions

- A relation on a set E is a subset of $E \times E$
- A Boolean expression on \mathbb{N}^{d} or \mathbb{Z}^{d} is a Boolean combination of affine inequalities $\sum_{i=1}^{d} a_{i} \cdot x_{i}+x_{0} \geq 0$ or $\sum_{i=1}^{d} a_{i} \cdot x_{i}+x_{0}>0$ on d variables.
- A Boolean affine relation is a Boolean affine expression in which one has distinguished input and ouput variables, e.g. with primes
- Relation union, relation composition $(R \circ S)(x, y)=\exists z: R(x, z) \& S(z, y)$.
- Transitive closure of R : the smallest reflexive and transitive relation which includes R :

$$
\begin{array}{rll}
R^{+}=R \cup R^{2} \cup \ldots \cup R^{k} \ldots & ; & R^{*}=I \cup R^{+} \\
R^{1}=R & ; & R^{n+1}=R \circ R^{n}
\end{array}
$$

Motivation

Boolean affine relations are ubiquitous in static program analysis:

- loop invariants
- "transformers"
- dependences and value-based dependences

Transitive closures are useful in many cases:

- program verification and termination
- loop scheduling (Pugh)
- communication-free parallelism

Over-Approximations

Unfortunately, the transitive closure of a Boolean affine relation is not always Boolean affine:

The transitive closure of

$$
\begin{aligned}
& \left(x^{\prime}=x+y\right) \&\left(y^{\prime}=y\right) \&\left(i^{\prime}=i+1\right) \text { is: } \\
& \left.\quad\left(i^{\prime}>i\right) \&\left(x^{\prime}-x=y \cdot\left(i^{\prime}-i\right)\right) \& y^{\prime}=y\right)
\end{aligned}
$$

which is not affine.
One has to resort to over- or under-approximations. This talk concentrates on over-approximations.
A common over-approximation is to ignore the fact that variables may be integral.

Related Works

- Kelly, Pugh et. al. introduced the idea of d-relations, i.e. relations on $x^{\prime}-x$, which can be summed to build the transitive closure
- Ancourt, Coelho and Irigoin generalized the idea by introducing the distance set: $(\Delta R)(d)=\exists x: R(x ; x+d)$.
- Sankaranarayanan et. al. applied Farkas lemma to the conditions $R \subseteq R^{+}$and $R \circ R^{+} \subseteq R^{+}$but the result was a bilinear system, to be solved by quantifier elimination or rewriting.

Kelly, Pugh et. al.: LCPC'95
Ancourt, Coelho, Irigoin: NSAD'2010
Sankaranarayanan, Sipma, Manna: SAS'2004

Characterization of Reflexive and Transitive Relations

- If R is reflexive and transitive, then $\approx_{R} \equiv\left\{x, x^{\prime} \mid R\left(x ; x^{\prime}\right) \& R\left(x^{\prime} ; x\right)\right\}$ is an equivalence relation
- The quotient relation R / \approx_{R} is an order
- Hence R can be written as $R\left(x ; x^{\prime}\right) \equiv f_{R}(x) \prec_{R} f_{R}\left(x^{\prime}\right)$ where f_{R} is the mapping from the universe to the equivalence classes of \approx_{R}, and \prec is the quotient order.

For finite graphs, the equivalence classes are the strongly connected components, and \prec_{R} is the transitive closure of the reduced graph.

Application, I

Select a shape for f - for instance, a linear function $f(x)=\mathbf{f} . x-$ and an order - for instance the ordinary order $\leq-$ and solve the constraint:

$$
R\left(x ; x^{\prime}\right) \Rightarrow \mathbf{f} . x \leq \mathbf{f} \cdot x^{\prime}
$$

- The resulting relation $S\left(x ; x^{\prime}\right) \equiv \mathbf{f} . x \leq \mathbf{f} . x^{\prime}$ is an over approximation of R^{*}.
- An improved result is $S\left(x ; x^{\prime}\right) \cap(\mathcal{D}(R) \times \mathcal{C}(R))$, the domain and codomain of R
- If R is Boolean affine, then the constraint can be solved using Farkas lemma.

Farkas Lemma

If the system of constraints $A x+b \geq 0$ is feasible, then:

$$
\forall x \cdot(A x+\mathbf{b} \geq 0 \Rightarrow \mathbf{c} \cdot x+d \geq 0) \equiv \exists \Lambda \geq 0: \mathbf{c}=\Lambda A \& d \geq \wedge \mathbf{b}
$$

- If R is convex: $R\left(x ; x^{\prime}\right) \equiv A x+A^{\prime} x^{\prime}+\mathbf{a} \geq 0$, then application of Farkas lemma gives the system:

$$
\Lambda A=-\mathbf{f}, \quad \Lambda A^{\prime}=\mathbf{f}, \quad \Lambda \mathbf{a} \leq 0
$$

- If R is non convex, apply Farkas to each clause in its DNF. The result is a system of inequalities in positive unknowns.

Application, II

- Eliminate Λ (the Farkas multipliers) independently for each subsystem
- The resulting system for \mathbf{f} is homogeneous and hence defines a cone
- Let r_{1}, \ldots, r_{n} be the rays of this cone. Each ray r_{i} define a valid function $f_{i}(x)=r_{i} . x$; all other vectors in the cone define redundant functions.
- The resulting approximation to R^{*} is:

$$
S\left(x ; x^{\prime}\right) \equiv \bigwedge_{i=1}^{n} f_{i}(x) \leq f_{i}\left(x^{\prime}\right)
$$

- \prec is the Cartesian product order \leq^{n}.

An Example

Consider the following relation from Sankaranarayanan et. al.:

$$
\left(x^{\prime}=x+2 y \& y^{\prime}=1-y\right) \vee\left(x^{\prime}=x+1 \& y^{\prime}=y+2\right)
$$

Let $f(x)=f_{1} x+f_{2} y$ be the unknown.

- The first clause gives the constraint $f_{1}=f_{2} \geq 0$
- The second clause gives the constraint $f_{1}+2 f_{2} \geq 0$
- One can take $f_{1}=f_{2}=1$ and the transitive closure is $x+y \leq x^{\prime}+y^{\prime}$.

Relation to the ACI method

Starting from:

$$
\Lambda A=-\mathbf{f}, \quad \Lambda A^{\prime}=\mathbf{f}, \quad \Lambda \mathbf{a} \leq 0
$$

one can eliminate f instead of Λ, giving $\Lambda\left(A+A^{\prime}\right)=0$ In the definition of the distance set

$$
(\Delta R)(d)=\exists x: A x+A^{\prime}(x+d)+a \geq 0
$$

elimination of x means finding - e.g. by Fourier-Motzkin -a positive matrix L such that $L\left(A+A^{\prime}\right)=0$. L can be chosen equal to Λ. If L. $a \leq 0$ the $A C I$ method gives $L A^{\prime}\left(x^{\prime}-x\right) \geq-L a$.
The basic algorithm gives $f=\Lambda A^{\prime}$ and $\Lambda A^{\prime}\left(x^{\prime}-x\right) \geq 0$.
The two methods gives equivalent results, one giving an approximation for R^{+}and the other for R^{*}.

Piecewise Affine Extension

When the number of clauses increases, the method fails $(f(x)=0)$ since the number of constraints increases but not the number of unknowns.
An example:

$$
\left(x<100 \& x^{\prime}=x+1\right) \vee\left(x \geq 100 \& x^{\prime}=0\right)
$$

One possible solution: take f as a piecewise affine function:

$$
f(x)=\text { if } \sigma(x) \geq 0 \text { then } g(x) \text { else } h(x)
$$

where σ, the split function, is taken to be affine:

$$
\sigma(x)=\sigma \cdot x+\sigma_{0}
$$

Expansion

The hyperplanes $\sigma(x) \geq 0$ and $\sigma\left(x^{\prime}\right) \geq 0$ split $E \times E$ into 4 regions, in which Farkas lemma can be applied, giving 4 systems of constraints. For instance:

$$
R\left(x ; x^{\prime}\right) \& \sigma(x) \geq 0 \& \sigma\left(x^{\prime}\right) \geq 0 \Rightarrow g(x) \leq g\left(x^{\prime}\right)
$$

If σ is known, the systems are still linear, and can be solved as above.

Another Example

For:

$$
R\left(x ; x^{\prime}\right) \equiv\left(x<100 \& x^{\prime}=x+1\right) \vee\left(x \geq 100 \& x^{\prime}=0\right) .
$$

and taking $\sigma(x)=x$, one obtain (after simplification):

$$
R^{*}\left(x ; x^{\prime}\right) \equiv\left(x=x^{\prime}\right) \vee\left(\left(x^{\prime}<101\right) \&\left(\left(x \leq x^{\prime}\right) \vee\left(0 \leq x^{\prime}\right)\right)\right.
$$

How to Choose the Split

- Note that $\sigma(x)$ and a. $\sigma(x)$ gives equivalent systems, whatever the sign of the constant multiplier a
- By manipulating the resulting systems, one can prove that for each clause in the DNF of R, either σ has a zero Farkas multiplier, or σ must belong to the cone generated by the rows of $A+A^{\prime}$.
- There are only a finite number of possibilities, which can be explored systematically. When the homogeneous part $\sigma . x$ is selected, one obtain a linear system for σ_{0}.
- For the exemple above, which is one-dimensional, there is only one possibility, $\sigma=1$, and then one can show that σ_{0} must be null.

Implementation

- The method has been implemented in Java, using PIP and the Polylib
- The algorithm for choosing σ is not implemented yet, and the user must supply it if necessary

Conclusion and Future Work

- Complete the implementation (choice of σ, detection of special cases)
- Preprocessing of R : change of variables, grouping, adding or removing variables ...
- Can one have more than one split (exponential complexity)
- Explore other forms for the function f (max and min) and other orders (lexicographic orders)
- Explore other representations of the transitive closure

