ZPolyTrans: a library for computing and enumerating integer transformations of Z-Polyhedra

Rachid Seghir

(Vincent Loechner because the french embassy did not deliver a visa to him)
Department of Computer Science
University of Batna, Algeria
seghir@univ-batna.dz
January 23, 2012

Outline

(1) Introduction

- What is ZPolyTrans ?
- Motivation
(2) A bit of theory
- Integer transformations and Presburger formulas
- Existential variables elimination
- Counting integer points in unions of parametric \mathbb{Z}-polytopes
(3) Related work
(4) Demonstration

What is ZPolyTrans ?

- ZPolyTrans is a program written in C for:
- computing integer affine transformations of parametric Z-Polytopes,
- counting integer points in the result of such transformations (unions of parametric \mathbb{Z}-polytopes).
- Based on PolyLib: for doing polyhedral and matrix operations.
- Based on Barvinok library: for counting integer points in a parametric polytope.
- Available on http://zpolytrans.gforge.inria.fr

Motivation

Code transformation, optimization and parallelization techniques \rightarrow computing and enumerating the integer affine transformations of parametric \mathbb{Z}-polyhedra.

- Array linearization for hardware design [Turjan et al. 2005],
- Cache access optimization [Ghosh et al. 1999, D'Alberto 2001, Loechner et al. 2002],
- Memory size computation [Zhao and Malik 2000, Zhu et al. 2006],
- Data distribution for NUMA-machines [Heine and Slowik 2000],
- ...

Example

Consider two loop nests accessing an array A.

```
for i = 0 to n do
    for j = i+1 to n do
        A[4*i+2*j] = ...
for k = 0 to n do
    for l = 0 to n do
        A[k+l] = ...
```

Question: which array elements are accessed? ZPolyTrans computes:

- the accessed array elements as a union of three \mathbb{Z}-polytopes:
$\{2 \leq x \leq 6 n-8 \wedge x$ even $\} \cup\{x=6 n-4 \wedge n \geq 1 \wedge x$ even $\} \cup$ $\{0 \leq x \leq 2 n \wedge x \in \mathbb{Z}\}$,
- the number of accessed elements as a piecewise quasi-polynomial, equal to 1 when $n=0,3$ when $n=1$ and $4 n-2$ when $n \geq 2$.

Integer transformations of \mathbb{Z}-polyhedra and Presburger formulas

Let $\mathcal{Z}=P_{\mathbf{p}} \cap L$ be a parametric \mathbb{Z}-polytope:
$P_{\mathbf{p}}=\left\{\mathbf{x} \in \mathbb{Q}^{d} \mid A \mathbf{x} \geq B \mathbf{p}+\mathbf{c}\right\}$ a parametric rational polytope,
$L=\left\{A^{\prime} \mathbf{z}+\mathbf{c}^{\prime} \mid \mathbf{z} \in \mathbb{Z}^{d}\right\}$ a lattice.

$$
\text { An affine function } \begin{aligned}
T: & \mathbb{Z}^{d} \\
& \rightarrow \mathbb{Z}^{k} \\
\mathbf{x} & \mapsto \mathbf{x}^{\prime}=A^{\prime \prime} \mathbf{x}+\mathbf{c}^{\prime \prime}
\end{aligned}
$$

The transformation of \mathcal{Z} by T is a Presburger formula

$$
\begin{aligned}
T(\mathcal{Z})=\left\{\mathbf{x}^{\prime} \in \mathbb{Z}^{k} \mid \exists \mathbf{x}, \mathbf{z}\right. & \in \mathbb{Z}^{d} \\
& \left.A \mathbf{x} \geq B \mathbf{p}+\mathbf{c}, \mathbf{x}=A^{\prime} \mathbf{z}+\mathbf{c}^{\prime}, \mathbf{x}^{\prime}=A^{\prime \prime} \mathbf{x}+\mathbf{c}^{\prime \prime}\right\}
\end{aligned}
$$

Existential variable elimination

The elimination of the existential variables is done in two steps:
(1) Some existential variables can be eliminated by removing equalities implying them (the result is \mathbb{Z}-polytope).
(2) Recursively eliminating the remaining existential variables from the \mathbb{Z}-polytope produced at the first step.

- rewrite it as a set of lower and upper bounds on the variable to be eliminated $I(\mathbf{x}) \leq \beta z, \alpha z \leq u(\mathbf{x})$
- the result is given by the intersection of the integer projections of all its pairs of lower and upper bounds.

The integer projection of a pair of bounds

- The projection of a pair of bounds is given in the form: dark shadow \cup \{exact shadow \cap sub-lattices of hyperplanes\}
- Projection of the pair of bounds $\{x+2 \leq 3 y, 2 y \leq x+1\}$

Example of the existential variables elimination

- Elimination of the existential variables from

$$
\begin{aligned}
& P=\left\{x \in \mathbb{Z} \mid \exists(i, j, k) \in \mathbb{Z}^{3}: 1 \leq i \leq p+4 \wedge\right. \\
& 1 \leq j \leq 5 \wedge 3 \leq 3 k \leq 2 p \wedge x=3 i+4 j+6 k+1\}
\end{aligned}
$$

- After removing the equality

$$
\left\{\begin{array}{r|rl}
-3 x-2 k & \leq 4 i^{\prime} \leq-3 x-2 k+p+3 \wedge \\
x \in \mathbb{Z} & \exists\left(i^{\prime}, k\right) \in \mathbb{Z}^{2}: & -2 x-3 k-6
\end{array}\right\}
$$

- Result of the rational elimination of i^{\prime} (when $p=4$).

Example of the existential variables elimination (2)

- Result of the integer elimination of $i^{\prime}($ when $p=4)$.

- Result of the integer elimination of k (when $p=4$).

- Number of integer points in the projection (for $p \geq 2$)
- Integer projection: $\mathcal{E}(p)=7 p+[14,10,12]_{p}$
- \neq rational projection: $\mathcal{E}(p)=7 p+20$

Counting integer points in unions of parametric \mathbb{Z}-polytopes

- The integer projection of a parametric \mathbb{Z}-polytope may result in a non-disjoint union of parametric \mathbb{Z}-polytopes.
- To compute the number of integer points in such a union,
- apply the inclusion-exclusion principle to the original set (rather than computing its disjoint union)
- call to Barvinok library to calculate the Ehrhart quasi-polynomial corresponding to each \mathbb{Z}-polytope and their intersections (if non empty).
- The results are finally combined (addition/substration) into a single quasi-polynomial.

Related work

Many approaches have been proposed:

- The work of W. Pugh [Pugh, 1994] on integer affine projections based on the Fourier-Motzkin variable elimination.
- The theoretical rational generating function based approach [Barvinok and Woods, 2002]; [Verdoolaege and Woods, 2005]; [Koeppe et al., 2008].
- The weak quantifier elimination approach [Lasaruk and Sturm 2007].
- The \mathbb{Z}-polyhedral model [Gautam and Rajopadhye, 2007]; [looss and Rajopadhye, 2012].
- The work of [Verdoolaege et al. 2005] based on applying rewriting rules and solving a parametric integer linear programming problem, implemented in Barvinok library.

Demonstration

To the demo!

