
Trading Off Memory For Parallelism Quality

Nicolas Vasilache1, Benoit Meister1, Albert Hartono2, Muthu Baskaran1, David Wohlford1, and
Richard Lethin1

1{vasilache,meister,baskaran,wohlford,lethin}@reservoir.com
1Reservoir Labs Inc., New-York, NY, USA

2{albert.hartono}@intel.com
2Intel Labs, Santa Clara, CA, USA (work performed while at Reservoir Labs Inc.)

ABSTRACT
We detail an algorithm implemented in the R-Stream com-
piler1 to perform controlled array expansion and conversion
to partial single-assignment form, which consists of (1) al-
lowing our automatic code optimizer to selectively ignore
false dependences in order to extract a good tradeoff be-
tween locality and parallelism, (2) detecting exactly all the
causes of semantics violations in the relaxed schedule of the
program and (3) incrementally correcting violations by min-
imal amounts of renaming and expansion. In particular, our
algorithm may ignore all false dependences and extract the
maximal available parallelism in the program given a limit
on the amount of expansion. The spectrum of memory con-
sumption then varies between no expansion and total single
assignment, with many steps between those extremes. The
exposed parallelism can be incrementally reduced to fit more
tightly the number and organization of processing elements
available in the targeted hardware, and, by the same to-
ken, to reduce the program’s memory footprint. We extend
our correction scheme in an iterative algorithm to tailor the
mapping of the program for a good tradeoff between paral-
lelism, locality and memory consumption. We demonstrate
the power of our technique by optimizing a radar benchmark
comprising a sequence of BLAS calls. By applying our tech-
nique and optimizing at a global level, we reach significant
performance improvements over an implementation based
on vendor optimized math library calls. Our technique also
has implications on algorithm selection.

1. INTRODUCTION
The tension between parallelism and locality of memory

references is an important topic in the field of compiler op-

1The technologies described in this paper are Patent Pend-
ing, Reservoir Labs, Inc. This work was funded in part
by US Army Space and Missile Defense Command, Code:
W9113M, P.O. 1500, Huntsville, AL 35807.

IMPACT 2012
Second International Workshop on Polyhedral Compilation Techniques
Jan 23, 2012, Paris, France
In conjunction with HiPEAC 2012.

http://impact.gforge.inria.fr/impact2012

timization. More parallelism allows more concurrent execu-
tion of the parallel portions of a program. Additional par-
allelism implicitly relates to more available computational
operations per second. Increasing locality directly trans-
lates into communication reduction between memories and
processing elements. Increasing parallelism may decrease lo-
cality and vice-versa. In the context of many-core computing
and locality-aware programing, our goal is to help solve the
complex tradeoffs in a generalized framework for classes of
applications suitable for traditional high-level loop transfor-
mation optimizations. R-Stream is based on the polytope
model [5, 13, 17]. In this setting, it is known that useful
scheduling properties of programs can be optimized such
as maximal fine-grained parallelism using Feautrier’s algo-
rithm [13], maximal coarse-grained parallelism using Lim
and Lam’s algorithm [22] or maximal parallelism given a
(maximal) fusion/distribution structure using Bondhugula
et al.’s algorithm [6].

In this paper we present a fully-automated iterative method
to perform controlled array expansion as a means to correct
violations arising from aggressive scheduling. We discuss
differences with other approaches and present a correction
algorithm that trades off memory expansion for parallelism
and degrades gracefully. We demonstrate the strength of R-
Stream by significant performance improvements in two use
cases related to dense linear algebra and radar applications.

2. RELATED WORK
We rely on well-established traditional terminology of com-

piler analysis and data dependence analysis [3, 25]. We
assume the reader is familiar with the notions of true de-
pendences (i.e. raw) and memory based dependences (i.e.
war or waw). To preserve program semantics, code trans-
formations must guarantee all the true dependences are kept
consistent with the order they appear in the original execu-
tion of the program. In practice, only dataflow dependences
must be preserved and various solutions have been explored
to reduce the parallelism-limiting effects of memory loca-
tion reuse. Feautrier [10] described the first algorithm for
array expansion in the polyhedral model using a variant of
parametric integer programming [11]. Improvements to the
Feautrier algorithm include [4]. One of the crucial problems
in array expansion is the ability to compute the last write [7,
12, 23]. Unfortunately, the memory requirements of such
approaches may grow prohibitively and various techniques
have been researched to reduce the consumption once paral-

lelization occurred [9, 26]. Closely related to the problem of
array expansion and contraction is array privatization [16,
23, 30, 31].
Other advanced contributions have looked at reducing the

memory footprint assuming the knowledge of a static speci-
fication of the schedule. Thies et al. “consider storage map-
pings that collapse one dimension of a multi-dimensional
array, and programs that are in a single assignment form
with a one-dimensional affine schedule” [28]. In the systolic
community, Wilde and Rajopadhye proposed a technique
for “transforming scheduled single-assignment code to mul-
tiple assignment code” [36]. These techniques assume the
program is in single assignment form and try to reduce the
storage using schedule information. Note that conversion
to single assignment entails potentially complex code du-
plications. This is caused by the dataflow propagation al-
gorithm which has to properly modify all the reads to a re-
named, written array. An illustration of this behavior can be
found in Figure 9 of Feautrier’s original work [12]. Reducing
the memory usage alone does not remove these duplications
when they are avoidable. For space considerations we omit
the discussion on static single assignment (SSA) form [8],
Array SSA [19] and Region Array SSA [27]. These contri-
butions and their interplay with the technique we present
in this paper will be the topic of future research. Our cur-
rent implementation is limited to static affine control loops.
We have extended it with support for data-dependent con-
ditionals [2] as well as arbitrary code (even precompiled)
through the use of blackboxing. The closest contributions
to our work are those of Lefebvre [20], Trifunovic [29] and
Vasilache [33]. We discuss them in more detail in the next
section.

3. OUR SOLUTION
We first define the terminology. The polyhedral model is a

mathematical abstraction to represent and reason about pro-
grams in a compact representation. We assume the reader
is familiar with basic concepts of the polyhedral model. We
only establish terminology and describe more advanced no-
tions. Our representation is based on a hierarchical gen-
eralized dependence graph (GDG)-based IR. The nodes of
our graph are statements that represent operations grouped
together in our internal representation. A statement S can
be simple or arbitrarily complex (i.e. external precompiled
object). Each statement has an iteration domain DS , which
is a union of disjoint convex polyhedra2. Each operation
within the domain is denoted by iS ∈ DS . For each individ-
ual array accessed by S in read or write mode, a memory
reference A with its associated affine access function is cre-
ated. If A is injective, only distinct memory locations are
touched and there is no temporal memory reuse. Other-
wise, temporal memory reuse on reference A exists and may
be exploitable depending on the scheduling function chosen.
A scheduling function ΘS maps each iteration in DS to its
actual execution time and thus defines a partial order on
the iterations of various statements. We use the notion and
conventions of Girbal et al. [14].
Loop Types : We extend our scheduling representation
with information pertaining to the kind of parallelism avail-
able in a loop. This information corresponds to common

2More precisely, R-Stream provides these representations
and implementations optimizations in terms of Z-Domains.

knowledge in the compiler community and we use traditional
terminology [3]: (1) doall loops do not carry any dependence
and can be executed in parallel; (2) permutable bands of
loops carry forward-only dependences and may be safely in-
terchanged and tiled; (3) sequential loops must be executed
in the specified order (not necessarily by the same proces-
sor) and (4) reduction loops are assumed to be executable
in any sequential order.
Placement : A placement function PS is a function that
maps the iterations of S to hierarchies of processing ele-
ments. Its application to the iteration domain dictates (or
provide hints at runtime) what iterations of a statement ex-
ecute where. There is an implicit relation between the type
of loop and the placement function.
Dataflow Dependence : We use the notation {T → S}
to express that T “depends on” S. With this notation, the
arrow can also be interpreted as “after”. In the case of a raw
dependence, T is a read that comes “after” S, a correspond-
ing write. A dataflow dependence {T → S}d (d subscript
for “dataflow”) is a special kind of raw dependence. It con-
veys additional last-write information. When it is exact, it
does not carry any redundancy (i.e. each read memory value
has at most 1 producer). Array dataflow analysis is a global
process involving all the statement in the considered portion
of the program [12, 16].
Violated Dependence : A violated dependence is a re-
lationship that mixes dependences and scheduling [32]. It
occurs when dependent iterations of the source and the tar-
get statements are scheduled in different order. Formally,
{(iT , iS) ∈ {T → S} | ΘT · iT ≪ ΘS · iS}, where ≪ de-
notes lexicographic ordering. Violated dependences between
statements are represented by edges of a special type in the
GDG. We write {T → S}v to denote the violation informa-
tion. A raw violation must be corrected by rescheduling. A
war of waw violation may be corrected either by reschedul-
ing or by using new memory locations for intermediate stor-
age. A violated dependence is a compact representation of
a localized problem in the expression parallelism and can be
resolved precisely.
Liveness Violated Dependence : A violated memory-
based dependence does not necessarily violate the program
semantics. A simple example is as follows: consider a se-
quence of 4 simple statements a = b; c = a; a = d; e = a;.
The sequence a = d; e = a; a = b; c = a; contains at least
a waw violation on a. The final values of c and e are un-
changed. Depending on whether a is live on exit (resp. or
not), the semantics of this small program is preserved (resp.
is violated). We define a liveness violation as a violated
dependence that transitively translates into a semantics vi-
olation; we write {T → S}lv. Note that any flow depen-
dence violation automatically translates to a liveness viola-
tion. Using a set notation, we derive the following property
of liveness violations.

Theorem 3.1. Let {T → S}v be a violated false depen-
dence. A subset of {T → S}v is a liveness violation if and
only if there exists a dataflow dependence {R → T}d such
that: {(iR, iT , iS)|(iR, iT) ∈ {R → T}d ∧ (iT , iS) ∈ {T →
S}v ∧ΘT · iT ≪ Θs · iS ≪ ΘR · iR} is non-empty.

Proof. Consider a dataflow dependence {R→ T}d such
thatR reads arrayA. No single covering write may intervene
between R and T . By construction of the schedule, {R →
T}d is still valid in the transformed program. Now consider

a statement S that also writes array A such that {T → S}v
is a waw violation (i.e. it is a waw dependence in the original
program that becomes a violation after scheduling). We
have the following properties:

• by definition of {R → T}d, no iteration of S covers
the dataflow dependence in the original program,

• therefore no iteration of S should cover {R → T}d in
the transformed program,

If some iteration of S covers {R → T}d, then there is a
liveness violation. This last condition is written (ΘT · iT ≪
Θs · iS ≪ ΘR · iR).

High-Level Mapping: : R-Stream performs high-level au-
tomatic mapping to heterogeneous architectures, a process
that includes parallelism extraction, task-formation, local-
ity improvement, processor assignment, data layout man-
agement, memory consumption management, explicit data
movements generation (as well as their reuse optimization
and pipelining with computations) and explicit synchroniza-
tion generation [21]. Most high-level optimizations in our R-
Stream take a GDG as input and generate a new GDG with
additional or altered information. Low-level optimizations
occur on a different SSA-based IR, after high-level trans-
formations have been applied. The output is generally C
extended with annotations and target-specific communica-
tion and synchronization library calls (OpenMP, pthreads,
DMAs, CUDA, Mitrion Parallel Assembly ...).
In the rest of the paper, we detail our contributions to

increase the amount of parallelism and its quality.

3.1 Preliminary Discussion

3.1.1 Partial Expansion
Lefebvre introduced an interesting method to manage stor-

age for parallel programs [20]. His first contribution is a
schedule-aware partial expansion that expands arrays as needed
for the parallel schedule to respect program dependences.
His second contribution examines the conditions under which
different arrays can share the same memory space and is
akin to memory contraction. We have our own advanced
mechanisms to perform array compaction, array contraction
and privatization; we consider these are related but different
topics. In R-Stream, multiple optimizations occur between
expansion and privatization. Our method is lazier: we first
compute the violations on the original false dependences of
the program. This process does not require array dataflow
analysis and serves as a pruning step. Then, we incremen-
tally correct the program by performing only the necessary
renaming, expansion and index-set splitting to correct the
violated dependences. Correction happens only when the
value liveness properties of the original program are vio-
lated too (i.e. if a write happens to the memory location
before the value has been consumed by all reads). Index-set
splitting allows more precise targeting of the memory viola-
tions. This is particularly useful when only a subset of the
writes are offending and may drastically reduce the amount
of expansion needed.

3.1.2 Correction of Loop Transformations
Our work relates to automatic correction of loop transfor-

mations [33]. Although we use the authors’ ideas to track

violations in the program [32], the differences are multi-
ple. By construction our algorithm respects the dataflow
dependences in the program; we consider combinations of
expansion, renaming and index-set splitting as correction
mechanisms; to limit expansion, we consider rescheduling
the program to precisely target the causes of the prohibitive
memory consumption; when we reschedule, we use the full
power of our state-of-the-art polyhedral scheduler and lastly,
our method is guaranteed to produce correct solutions. In
contrast, the aforementioned contribution violates flow de-
pendences that are hard to correct without a powerful sched-
uler; only considers loop shifting and index-set splitting as
correcting transformations; and will fail if more advanced
affine transformations are needed.

3.1.3 Lazy Expansion
Although our work has been developed independently [34]

and has not been published until now, it has multiple sim-
ilarities with the work of Trifunovic [29]. Both works build
on the notion of violated dependences [32], perform an iter-
ative lazy expansion scheme to correct liveness dependences
and may fail at expanding. As far as differences are con-
cerned, our work always guarantees the proper scheduling
of dataflow dependences. Our method allows the setting of
an upper bound on the admissible level of memory increase.
When the limit is reached, we precisely determine what de-
pendence is the cause of the biggest increase and perform a
callback to the scheduler. The scheduler then incorporates
the offending false dependence in its constraints set and
reschedules the program with potentially less parallelism.
By iterating between expansion and scheduling, we reach a
fixed point with good parallelism quality given a guaranteed
bound on the memory consumption. By varying the amount
of admissible expansion, we can trade off memory usage for
parallelism quality. Our work allows index-set splitting to
be performed on the source of a violation, which can greatly
reduce the required increase in memory consumption. We
also account for placement considerations to tailor expan-
sion to the dimension and shape of the processor grid. We
use loop type informations to further construct liveness vio-
lations. The handling of permutable loops is non-trivial and
necessary to guarantee tiling will still be legal (see 4.1).

3.2 Traditional Array Expansion
Array expansion is sometimes necessary to enable paral-

lelization. For example, consider the following sequential
matrix-vector loop kernel:

for (i=0; i<N; i++) { doall (i=0; i<N; i++) {
s = 0; s[i] = 0;
for (j=0; j<N; j++) { red (j=0; j<N; j++) {
s+=A[i][j] * B[j]; s[i] += A[i][j] * B[j];
} }
C[i] = s; C[i] = s[i];

} }

In the left code, the scalar variable may be mapped directly
into a machine register, reducing the number of memory
accesses. However, it becomes a storage bottleneck when
trying to parallelize the loop. s may be expanded into an
array and yield the code on the right. Later in the mapping
process, once placement on the processor space is decided, s
can be privatized and a single copy is made for each proces-
sor. In the particular case of OpenMP, declaring the variable
s private is sufficient. Note that if conversion to single as-

signment form is performed [12], s will be expanded to a
2-D array and additional control flow will be needed.

3.3 Placement Aware, Iterative Algorithm
Our algorithm (Figure 1) initializes a list of false depen-

dences that must always be preserved by the scheduler in
Step 4. If the memory limit M is set to infinity, Fdep will
never be incremented and the scheduler will never be forced
to respect false dependences. In that case, our algorithm
may produce a total static expansion. In some cases, Fdep

may start initialized and the scheduler behaves conserva-
tively with respect to those dependences. This may happen
when dataflow dependence analysis can not be computed
exactly (for instance when weak-writes are involved.
Inserting Copy-Out Operations : Step 2 of our algo-
rithm corresponds to the static last-value assignment de-
scribed in earlier work [31]. Since corrective array expansion
solves conflicts by writing data to new memory locations, it
can change the location of memory values that are visible
outside of the optimization scope. To handle such cases,
we introduce idempotent copies to the liveout memory loca-
tions. The dataflow propagation phase (Step 21) of the algo-
rithm treats these copies as regular statements and properly
performs the substitution of the reads. Eventually, the por-
tions that have not be renamed are easily removed during
a post-processing phase (Step 24). Consider the following
example: in Step 2, our algorithm introduces the following
copies corresponding to the locations written by references
B and C. Our algorithm may schedule the copies with the
original computations or leave them at the end. The latter
is illustrated in this example. After dataflow propagation,
the copies have been modified on the right code:

// Original code // Final parallelized code
for (i = 0; i <= N; i++) { doall (i = 0; i <= N; i++) {
for (j = 0; j <= N; j++) { doall (j = 0; j <= N; j++) {
C[i] = i+j+1; C_e[i][j] = i+j+1;
B[i][1+j] = B[1+i][j]*C[i]; B_r[i][1+j] =

}} B[1+i][j] * C_e[i][j];
doall (i = 0; i <= N; i++) { }}
doall (j = 1; j<= N+1; j++) { doall (i = 0; i <= N; i++) {

B[i][j] = B[i][j]; doall (j = 1; j <= N+1; j++) {
}} B[i][j] = B_r[i][-1 + j];
doall (i = 0; i <= N; i++) { }}
C[i]=C[i]; doall (i = 0; i <= N; i++) {
} C[i] = C_e[N][i]);

}

Scheduling And Placement : Step 4 and Step 5 are
enabling technologies on which this paper relies. We have
discussed the high-level properties of the scheduling and
placement algorithms implemented in R-Stream. Figure 2
shows the interplay between these concepts. Additionally,
there is a tension between parallelism and locality that inter-
plays with expansion. Parallelism and locality requirements
clearly dictate the need for expansion. We also believe that
proper memory increase limits can guide the scheduler to-
wards a good tradeoff between parallelism and fusion. Ex-
ploitation of such a technique is left for future work; this
paper focuses on the ideas and algorithm to enable this ex-
ploitation.
Loop Type Information : Loop type information degra-
dation is the means by which our current implementation
controls the tradeoff between memory expansion and place-
ment to match the physical resources available.
Computing Violations : Step 7 compute violated de-
pendence information [32] It is done on a written memory
reference by reference basis. This step is also the place we

Input: A GDG with only nodes, a memory limit M
Output: A scheduled GDG fitting within M

1. Fdep ← ∅
2. GDG.nodes← insert copy out operations ()
3. GDG.edges← array dataflow analysis ()
4. GDG.schedule← schedule ({GDG.deps ∪ Fdep})
5. GDG.placement← place pe grid (GDG.schedule)
6. GDG.loop info←

compute loop (GDG.schedule, GDG.placement)
7. GDG.edges← {GDG.edges ∪

violations (GDG.edges, GDG.schedule,
GDG.loop info)}

8. foreach (A ∈ GDG.nodes.written references) {
9. V writes← ∅
10. foreach (w = {T → S}v ∈ GDG.edges.violations) {
11. foreach (r = {T ′ → S′}d ∈ GDG.edges.dataflow) {
12. V writes← V writes ∪ liveness pb (w, r)
13. }}

14. GDG.index set splitting (V writes)
15. GDG.expand (V writes)
16. if (GDG.memory consumption () > M) {
17. Fdep ← Fdep ∪GDG.get expensive violation ()
18. GDG.reset ()
19. goto step 4
20. }

21. GDG.dataflow propagation ()
22. GDG.update graph ()
23. }

24. GDG.remove dead code ()

Figure 1: Placement-Aware, Iterative, Corrective
Array Expansion Algorithm

Figure 2: Tradeoff fusion/parallelism/expansion

consider the loop types computed in Step 6 that are sched-
ule and placement dependent. In particular, if a loop in the
final space-time order is a doall, it may be executed in par-
allel. To guarantee correctness under synchronization-free
parallel execution, no violation should occur under doall
loop semantics. Intuitively, this requires more memory to
store temporary values than if the loop semantic were se-
quential. The decision on conservative handling of the loop
types information (irrespective of runtime decisions) is done
by conservative violation computation. We use the charac-
terization of loop types semantics. We abuse the notations
to order loop types by their impact on the amount of expan-
sion (the higher in the order, the more impact on memory):
doall > reduction > permutable > sequential. Note that,
in the following example, even sequential loops can force
expansion.

// Scheduled (poorly), needs expansion
// Original for (i=0; i<N; i++)
for (i=0; i<N; i++) a = B[i];
a = B[i]; for (j=0; j<N; j++)
A[i] = a; A[i] = a;

Consider a false dependence {T → S} in the original pro-
gram where T is a write. To compute violations with loop
type information, we determine the iteration subset where
the schedule for S is greater or equal to T after transfor-
mation. Under the loop type semantics, the following cases
define violation subsets of the original dependence:

• portions of doall loops that are strictly reversed,

• portions of reduction loops ordered at the same time,

• portions of sequential loops that are ordered at the
same time step or that are reversed,

• permutable loops are trickier; they must be consid-
ered by groups of fully permutable bands. For K per-
mutable loops, up to K portions in violation may be
generated (lexicographic order reversal along K).

This complex case disjunction is necessary to support all
loop type semantics. Support for permutable loops is crucial
for tiling [18, 37].
Gathering Liveness Violations : Steps 10 to 13 com-
pute liveness violations, which must be corrected. Step 12
is clear: for each of the false dependence violation on A,
iterate over the dataflow dependences reading the reference
A and determine if the dataflow dependence is covered by
the violation. The problem reduces to writing the proper
ordering constraints using set operations and the schedules
in the transformed program [32]. From this point onwards,
violation refers to liveness violations that must be corrected
by expansion.
Index-set splitting : In the context of false dependence
violations, it has been shown that index-set splitting can
reduce the volume of iterations of a statement that needs
correction [33]. In our context, this idea translates directly
into fewer memory duplications. The idea is to determine
whether violation occurs on a relatively smaller (i.e. at
least 2x lower volume or strictly lower dimensionality) sub-
portion of the iteration domain of the write statement. This
is done by projecting the violation set on the iteration do-
main of the offending write statement using standard op-
erations on iteration domains. Splitting too much may be
undesirable because it increases the code size by a-priori

unpredictable amounts. Our heuristic is based on counting
points in parametric polyhedra [24]. It has a parametrized
threshold at which to trigger splitting. At this point, any
user input on parameter context is very useful.
Dataflow Propagation and Side Effects : Dataflow
propagation is called in Step 21 but also helps explain the
expansion process of Step 15, which is the reason we discuss
it now. The need for dataflow propagation occurs when a
written memory location is expanded. The program must
be updated so that statements touching modified memory
locations properly reference the new locations. This infor-
mation is directly available from the flow dependences in
the GDG. Propagating this information creates a need for
index-set splitting in the statements that correspond to the
read portion of the dependences. Here, the split is not an
optimization but is needed for semantic correctness. The
determination of the split is done by projecting the flow de-
pendence on the iteration domain of the reading statement
using standard operations on iteration domains. In the fol-
lowing example, suppose c is live on exit. After renaming, a
portion of T must refer to the original memory c and another
(disjoint) portion of T must refer to the renamed memory
c_r. We assume c is live on exit:

// Before renaming // After renaming
c = 0; c = 0;
for (i=0; i<=n; i++) { for (i=0; i<=n; i++) {

B[i] = c; B[i] = (i==0) ? c : c_r;
c = c + A[i]; c_r = (i==0) ? c+A[i] : c_r+A[i];

} }}
c = c_r;

In general, index-set splitting may create very complex con-
trol flow, especially in the context of Z-Polyhedra where the
lattice is not the identity. We developed heuristics to keep
the splitting under control. Modeling the control flow in-
crease to degrade expansion and by extension parallelism
will be the topic of future work.
Renaming and Expansion : The reader may assume we
are using Lefebvre’s method [20] to perform expansion and
renaming. Eventually, our algorithm iterates on all nodes
that are still in violation at a given step. It gathers all
dependences creating the considered violation and computes
the new renamed or expanded array. Dataflow propagation
is then called to update all the depending nodes. Consider
the following simple illustrative example and its aggressively
parallelized version with maximal parallelism and without
considerations for correctness:

// Original code // Maximal parallelism
for (i=0; i<=N; i++) { doall (i=0; i<=N; i++) {
for (j=0; j<=N; j++) { doall (j=0; j<=N; j++) {
C[i]=i+j+1; C[i]=i+j+1;
B[i][1+j]= B[i][1+j]=

B[1+i][j]*C[i]; B[1+i][j]*C[i];
}} }}

There is a violation {S1 → S0}lv for all values of j because
all iterations (i, j) occur (semantically) at the same time.
However, a simple renaming of C[i] into D[i] will not suffice
because of the dataflow dependence {S1 → S0}d. Expansion
is necessary as seen in the transformed code below.

// Renamed // Expanded
doall (i=0; i<=N; i++) { doall (i=0; i<=N; i++) {
doall (j=0; j<=N; j++) { doall (j=0; j<=N; j++) {
D[i]=i+j+1; C_e[i][j]=i+j+1;
B[i][1+j]= B[i][1+j]=

B[1+i][j]*D[i]; B[1+i][j]*C_e[i][j];
}} }}

In this form, the code is not yet correct since a violation
{S1 → S1} remains on array B. The next step of our algo-
rithm properly performs the renaming of B into B_r. Note
that renaming does not modify the access subscripts. Our
analysis shows there is no dataflow dependence between the
renamed iterations and renaming is sufficient. In this case,
renaming has the effect of enabling the parallelism in the
loops by differentiating the read array from the written ar-
ray.

// Final code
doall (i=0; i<=N; i++) {
doall (j=0; j<=N; j++) {

C_e[i][j]=i+j+1;
B_r[i][1+j]=B[1+i][j]*C_e[i][j];

}}

Recovering From Memory Expansion Limit : Steps
16 to 20 describe our algorithm’s behavior in case the limit
on memory increase M is reached. The behavior is simple.
We augment Fdep with a well-chosen dependence that en-
tails the most violations. This is currently chosen using a
heuristic based on counting the number of violations [24].
The algorithm jumps back to Step 4 and restarts. This be-
havior is not optimal since progress on expansion is lost but
it is guaranteed to terminate and works well in practice.
Removing Dead Code : Step 2 of the algorithm inserts
idempotent copy-out operations and modify them accord-
ingly during dataflow propagation. If portions of such copies
are not modified at all during the whole corrective array ex-
pansion algorithm, they end up as useless copies. Copies
that read and write the same data at the end of the al-
gorithm are deleted from the transformed program in Step
23. In addition, we should also mention that the dataflow
propagation of our algorithm has a nice property, as it may
exhibits dead code in the original program: portions of the
program that write to memory locations that are overwrit-
ten before being read or that are never read are removed.

4. PERFORMANCE EVALUATION

4.1 An Example: Givens QR Decomposition
This section demonstrates the interplay with array expan-

sion. In the pseudo-codes presented, > a means write to a,
< a means read from a, <> a means first read then write a

in the same iteration. This notation allows us to be concise
and to abstract from the operational details of the algorithm.
Because of scalar dependences parallelization is tradition-

ally prohibited, except on the innermost k-loop. Total array
expansion converts all scalars to 2-D arrays with a memory
increase of 400%. Depending on the type of the loops af-
ter scheduling, corrective array expansion generates either
no increase (Version 0), a 0.5% increase (Version 1), a 1%
increase (Version 3) or a 400% increase (Version 2)3.

// Original {seq,seq,doall} // Version 1 {perm,perm,doall}
for (i=0; i<=N-2; i++){ for (i=0; i<=N-2; i++){ // p
for (j=0; j<=N-i-2; j++){ for (j=i; j<=N-2; j++){ // p
S0(<A[N-1-j,i], >a); S0(<A[N-1+i-j,i], >a[i]);
S1(<A[N-2-j,i], >b); S1(<A[N-2+i-j,i], >b[i]);
S2(<a, <b, >c, >d); S2(<a[i], <b[i], ...);

3The {perm, perm, perm} loop structure is only obtainable
when S0, S1 and S2 are sunk at the same level as S3. This
is done by adding a dummy k = 0 dimension in the IR that
does not change the input code. This enables finer pipelining
with S3 by the scheduler.

doall (k=0; k<=N-i; k++){ doall (k=0; k<=N-1-i; k++){
S3(<>A[N-2-j,i+k], S3(<>A[N-2+i-j, i+k],

<>A[N-1-j,i+k], <>A[N-1+i-j, i+k],
<c, <d); <c[i], <d[i]);

}}} }}}
// Version 2 {perm,perm,perm} // Vers. 3 {seq,doall,doall}
for (i=0; i<=N-2; i++) { // p for (i=0; i<=2*N-4; i++){
for (j=i; j<=N-2; j++) { // p doall (j=..; j<=..; j++){
for (k=i; k<=N-1; k++) {// p S0(<A[N-1+i-j,i],>a[i-j]);
if (k==i) { S1(<A[N-2+i-j,i],>b[i-j]);
S0(<A[N-1+i-j,i],>a[i,j-i]); S2(<a[i-j],<b[i-j],...);
S1(<A[N-2+i-j,i],>b[i,j-i]); doall (k=..; k<=..; k++) {
S2(<a[i,j-i],<b[i,j-i], S3(<>A[N-2+i-j,i+k],

>c[i,j-i],>d[i,j-i]); <>A[N-1+i-j,i+k],
} <c[i-j],<d[i-j]);
S3(<>A[N-2+i-j,i+k], }}}

<>A[N-1+i-j,i+k],
<c[i,j-i],<d[i,j-i]);

}}}

We omit the upper and lower bounds for the j and k-loops
in Version 3. They are non-trivial expressions involving min,
max and division operations that would clutter the code.

This has implications on the shapes of parallelism that R-
Stream discovers. Our whole mapping process supports gen-
eration of code for Cell and SMP. Permutable loops are tiled
creating coarse-grained tasks with less synchronizations. We
observe target-specific behaviors. Version 0 does not have
permutable loops; its execution is slow on both targets. It
is the base of our experiments without our optimizations,
Version 1 allows the creation of coarse-grained tasks and
performs the best in our Xeon trial. This is not true on
Cell where the footprint of the innermost k loop is too large
to fit the scratchpad memory. On Cell, Version 1 executes
slower than the original version. This is because there is no
gain in parallelism granularity, hence no reuse across lines
of A. Additionally, we have to communicate a, b, c and d

which are now 1-D arrays. On SMP, the cache hierarchy
saves the day. Version 2 has the nice property of exhibiting
three permutable loops which can create two coarse-grained
parallel loops after 3-D tiling. This comes at the cost of
the global memory footprint of the application. The much
higher memory cost is better for Cell because the local foot-
print resulting from the deep tiling of the loops fits on the
scratchpads. Therefore, the local footprints exhibit reuse
that reduces the number of overall communications. Inter-
estingly, a much bigger memory footprint results in much
fewer communications thanks to better exploitation of local-
ity. Version 3 is an intermediate version that fits both Cell
and SMP. It is easily obtained from Version 1 by skewing
the j-loop into i. We can describe it as a medium-grained
parallel version with many outermost sequential iterations.
It performs decently on both targets.

Target Ver. 0 Ver. 1 Ver. 2 Ver. 3
Xeon E5405(GCC-4.4) 1 11.08 10.46 5.38
Cell QS22 (XLC-10.1) 1 0.58 16.77 5.27

We run in single precision mode, on a 1024x1024 matrix
and we obtain the performance table above. Numbers in
each row are normalized execution speeds relative to the
original version without our compiler optimizations (base
1).

4.2 Radar Benchmark
We demonstrate the benefits of our algorithm on a sig-

nal processing application. Adaptive beamforming is an al-
gorithm to eliminate interference and clutter in a phased

 0

 1

 2

 3

 4

 5

 6

 7

 8

1K 2K 3K 4K 5K 6K 7K 8K 9K 10K

G
fl

o
p

s

#Channels

MKL
Ours(GCC)
Ours(ICC)

GCC
ICC

(a) MVDR-SER

 0

 10

 20

 30

 40

 50

1K 2K 3K 4K 5K 6K 7K 8K 9K 10K

G
fl

o
p

s

#Channels

MKL
Ours(GCC)
Ours(ICC)

GCC
ICC

(b) CSLC-LMS

 0

 1

 2

 3

 4

 5

 6

 7

1K 2K 3K 4K 5K 6K 7K 8K 9K 10K

G
fl

o
p

s

#Channels

MKL
Ours(GCC)
Ours(ICC)

GCC
ICC

(c) CSLC-RLS

Figure 3: Parallel Radar Performance.

array antenna. Multiple different beamforming algorithms
exist [35], we study three of them (MVDR-SER, CSLC-RLS
and CSLC-LMS) in the context of corrective array expan-
sion. We have implemented two versions of these algorithms:
an Intel MKL library based on BLAS calls and a simple text-
book C version. R-Stream optimizes the C code and pro-
duces OpenMP: we compare C code optimized to OpenMP
to a sequence of MKL calls. We evaluated performance on
a dual socket quad-core E5405. We used R-Stream , GCC
4.3.04, ICC 11.056 and Intel MKL 10.2.1. We report perfor-
mance numbers on eight threads in single precision mode.
All experiments were run ten times and then averaged. The
performance results for the three beamforming algorithms
are provided in Figure 3. The performance of ICC and GCC
is low; they are unable to parallelize the textbook codes.
Our performance is better than MKL for most of problem
instances. We obtain up to 7x speedup over MKL on CSLC-
LMS. This is because we are able to parallelize the outer-
most loop iterating over CSLC-LMS computation, whereas
in the MKL version, such an outermost loop can not be par-
allelized due to loop-carried dependences. For MVDR-SER
and CSLC-RLS, effective exploitation of data locality dom-
inates the performance as the outermost loops of the most
compute-intensive parts must be executed sequentially be-
cause of loop-carried dependences. Obtaining the results in
this section did not necessitate the use of a memory limit.
Figure 2 is an extremely simplified view of accesses to one
of the arrays in the hotspot of the CSLC-LMS algorithm,
the one on which our solution performs best. The original
code can be represented with a few dozen lines of C code (or
5 MKL calls and other statements enclosed in a sequential
outer loop). The final code is more than 1,000 lines long,
after scheduling, correction and tiling are applied. Back
to Figure 2, R-Stream’s affine scheduling algorithm auto-
matically finds the bottom-right schedule (parallelism with
partial fusion) once false dependences are ignored. Writes
to z are then corrected into expanded writes to ze and 2-
dimensional arrays are sufficient to enable the exploitation
of 2 degrees of outermost parallelism. These 2 outermost
parallel loops also enable tiling. The performance of the
top-right code variant (max. fusion) is significantly lower.
Even if the memory footprint is significantly smaller, tiling
cannot be exploited (i.e. only 1 doall loop). The perfor-

4”-O6 -fno-trapping-math -ftree-vectorize -msse3 - fopenmp”
5”-fast -openmp” flags for the code we generate
6”-fast -parallel” flags for the MKL code.

mance of the bottom-left code (max. parallelism with no
fusion) is also significantly lower because fusion and reuse
opportunities are lost. In terms of algorithm variants, our
solution allows us to determine that CSLC-LMS is an al-
gorithm that contains more parallelism than the other two.
To be complete, our solution should also include index-set
splitting [15] based on true dependences to uncover the ab-
solute maximal available parallelism. Nevertheless, it can
be readily used to help with algorithm selection.

5. DISCUSSION AND FUTURE WORK
An important class of storage optimization techniques are

based on optimizing storage given a fixed schedule [1]. Such
techniques could be integrated directly in our iterative algo-
rithm to reduce the actual footprint to a minimum before de-
ciding whether to reintegrate a liveness violation and to trig-
ger rescheduling. Other clear improvements would consist in
integrating array privatization at the same stage, bounding
expanded buffers to sizes multiples of the actual tile sizes and
taking advantage of OpenMP lastprivate semantics to re-
move unnecessary copy-backs. One of the challenges in per-
forming contraction and privatization within the algorithm
presented in this paper is the complex interplay with hier-
archical scheduling. It is known that schedule-independent
storage optimization is less successful than schedule-aware
storage optimization [28]. Contracting too early in the com-
pilation flow would prevent certain schedules at the next
level of the hierarchy. On the other hand, applying the al-
gorithm we propose, especially after multiple levels of tiling,
is very unlikely to scale. Therefore, the currently preferred
approach is to handle these additional optimization opportu-
nities separately, in a latter phase when schedules and place-
ments are fully determined. R-Stream is not limited to a
single scheduling decision and has mechanisms to devise dif-
ferent schedules at various levels of the architecture hierar-
chy. For instance, this allows exploitation of coarse-grained
parallelism at the highest level and fine-grained SIMD paral-
lelism at the lowest level. The expansion we describe in this
paper lies somewhere in between schedule-independent and
schedule-aware expansion. It consists in performing expan-
sion that allows a controlled subset of loop transformations
(i.e. the ones needed for tiling). This is achieved by sup-
porting permutable loop semantics and devising expansions
that are valid under any tiling configuration using a given
schedule. Without this special support, it would not be pos-
sible to allow tiling and parallelism exploitation for Version

1 and Version 2 of the QR decomposition for instance.
It is not clear that contraction techniques would easily

be integrated in this philosophy. This is an interesting re-
search prospect. In the future, it will also be interesting
to examine the results of our algorithm in the context of
auto-tuning. Areas with great potential include understand-
ing how memory usage limitation influences parallelism and
vice-versa and to examine tradeoffs with control flow in-
crease on various architectures. Other opportunities include
further extending the behavior of our algorithm to support
runtime generated information and some form of dynamic
single assignment.

6. CONCLUSION
We have introduced an iterative algorithm for array ex-

pansion that corrects liveness violations of an aggressively
scheduled program. By combining placement decisions on
the physical processing elements available with loop type se-
mantics, our algorithm supports subsequent application of
tiling. We have developed and integrated this algorithm in
R-Stream and put particular emphasis on applicability of the
technique. We have showed simple examples of new map-
ping tradeoffs between quality of parallelism and memory
usage that our algorithm discovers. Additionally, we have
uncovered significant parallelism in only one out of three al-
gorithms that performs interference elimination in a radar
application. The other two algorithms do not possess this
kind of parallelism which limits their applicability to a large
number of antennas. We demonstrated up to 7x speedup
over a sequence of MKL calls. We believe this contribu-
tion is an important step in better harnessing the difficult
tradeoffs between parallelism, locality, communication and
memory usage.

7. REFERENCES
[1] C. Alias, F. Baray, and A. Darte. Bee+cl@k: an

implementation of lattice-based array contraction in
the source-to-source translator Rose. In Languages
Compilers, Tools and Theory for Embedded Systems
(LCTES), pages 73–82, New York, NY, USA, June
2007. ACM Press.

[2] J. R. Allen, K. Kennedy, C. Porterfield, and
J. Warren. Conversion of control dependence to data
dependence. In Proceedings of the 10th ACM
SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, pages 177–189, January
1983.

[3] R. Allen and K. Kennedy. Optimizing compilers for
modern architectures : a dependence-based approach.
Morgan Kaufmann, 2002.

[4] D. Barthou, A. Cohen, and J.-F. Collard. Maximal
static expansion. In Proceedings of the 25th ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 98–106, January 1998.

[5] C. Bastoul. Code generation in the polyhedral model
is easier than you think. In PACT’04, pages 7–16,
Juan-les-Pins, September 2004.

[6] U. Bondhugula, A. Hartono, J. Ramanujan, and
P. Sadayappan. A practical automatic polyhedral
parallelizer and locality optimizer. In ACM SIGPLAN
Programming Languages Design and Implementation
(PLDI ’08), Tucson, Arizona, June 2008.

[7] J.-F. Collard, D. Barthou, and P. Feautrier. Fuzzy
array dataflow analysis. In Proceedings of the 5th
ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 92–101, Santa
Barbara, California, July 1995.

[8] R. Cytron, J. Ferrante, B. K. Rosen, and F. K.
Zadeck. Efficiently computing static single assignment
form and the control dependence graph. ACM
Transactions on Programming Languages and
Systems, 13(4):451–490, October 1991.

[9] A. Darte, R. Schreiber, and G. Villard. Lattice-based
memory allocation. IEEE Trans. Computers,
54(10):1242–1257, December 2005.

[10] P. Feautrier. Array expansion. In Proceedings of the
2nd International Conference on Supercomputing, St.
Malo, France, June 1988.

[11] P. Feautrier. Parametric integer programming.
RAIRO-Recherche Opérationnelle, 22(3):243–268,
1988.

[12] P. Feautrier. Dataflow analysis of array and scalar
references. International Journal of Parallel
Programming, 20(1):23–52, February 1991.

[13] P. Feautrier. Some efficient solutions to the affine
scheduling problem. Part II. Multidimensional time.
International Journal of Parallel Programming,
21(6):389–420, December 1992.

[14] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen,
D. Parello, M. Sigler, and O. Temam. Semi-automatic
composition of loop transformations for deep
parallelism and memory hierarchies. Int. J. Parallel
Program., 34(3):261–317, June 2006.

[15] M. Griebl, P. Feautrier, and C. Lengauer. Index set
splitting. International Journal of Parallel
Programming, 28:607–631, July 1999.

[16] J. Gu, Z. Li, and G. Lee. Symbolic array dataflow
analysis for array privatization and program
parallelization. In Proceedings of the 1995 ACM/IEEE
Conference on Supercomputing, March 1995.

[17] G. Gupta and S. Rajopadhye. The Z-polyhedral
model. In PPoPP’07, pages 237–248, New York, NY,
USA, June 2007. ACM Press.

[18] F. Irigoin and R. Triolet. Supernode partitioning. In
Proceedings of the 15th ACM SIGPLAN-SIGACT
Symposium on Principles of programming languages,
pages 319–329, New York, NY, USA, January 1988.
ACM Press.

[19] K. Knobe and V. Sarkar. Array-SSA form and its use
in parallelization. In ACM SIGPLAN POPL, pages
107–120, January 1998.

[20] V. Lefebvre and Paul Feautrier. Automatic storage
management for parallel programs. Parallel
Computing, 24(3–4):649–671, May 1998.

[21] R. Lethin, A. Leung, B. Meister, P. Szilagyi,
N. Vasilache, and D. Wohlford. Final report on the
R-Stream 3.0 compiler DARPA/AFRL Contract #
F03602-03-C-0033, DTIC AFRL-RI-RS-TR-2008-160.
Technical report, Reservoir Labs, Inc., May 2008.

[22] A. W. Lim and M. S. Lam. Maximizing parallelism
and minimizing synchronization with affine
transforms. In PoPL’97, pages 201–214, Paris, France,
January 1997.

[23] D. E. Maydan, S. P. Amarasinghe, and M. S. Lam.
Array-data flow analysis and its use in array
privatization. In Proceedings of the 20th ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 2–15, New York, NY,
USA, 1993. ACM Press.

[24] B. Meister and S. Verdoolaege. Polynomial
approximations in the polytope model: Bringing the
power of quasi-polynomials to the masses. In ODES-6:
6th Workshop on Optimizations for DSP and
Embedded Systems, April 2008.

[25] S. Muchnick. Advanced Compiler Design and
Implementation. Morgan-Kaufmann, 1997.

[26] F. Quilleré and S. Rajopadhye. Optimizing memory
usage in the polyhedral model. Transactions on
Programming Languages and Systems, 22(5):773–815,
September 2000.

[27] S. Rus, G. He, C. Alias, and L. Rauchwerger. Region
array-SSA. In Proceedings of the 15th international
conference on Parallel architectures and compilation
techniques, PACT ’06, pages 43–52, New York, NY,
USA, January 2006. ACM.

[28] W. Thies, F. Vivien, J. Sheldon, and S. Amarasinghe.
A unified framework for schedule and storage
optimization. In ACM SIGPLAN PLDI, pages
232–242, June 2001.

[29] K. Trifunovic, A. Cohen, R. Ladelsky, and F. Li.
Elimination of memory-based dependences for
loop-nest optimization and parallelization. In 3rd
GCC Research Opportunities Workshop (GROW’11),
Chamonix, France, April 2011.

[30] P. Tu. Automatic array privatization and
demand-driven symbolic analysis. Technical Report
UIUCDCS-R-95-1911, University of Illinios at
Urbana-Campaign, May 1995.

[31] P. Tu and D. A. Padua. Automatic array
privatization. In Compiler Optimizations for Scalable
Parallel Systems Languages, pages 247–284, 2001.

[32] N. Vasilache, C. Bastoul, A. Cohen, and S. Girbal.
Violated dependence analysis. In ICS, pages 335–344,
June 2006.

[33] N. Vasilache, A. Cohen, and Louis-Noël Pouchet.
Automatic correction of loop transformations. In 16th
International Conference on Parallel Architecture and
Compilation Techniques (PACT’07), pages 292–304,
Brasov, Romania, September 2007. IEEE Computer
Society Press.

[34] N. T. Vasilache, A. K. Leung, B. Meister, and R. A.
Lethin. System, method and apparatus for aggressive
program scheduling. In U.S. Provisional App. No.
61/371,126, August 2010.

[35] P. Vouras and B. Freburger. Application of adaptive
beamforming techniques to HF radar. In IEEE Radar
Conference, pages 1–6, Roma, May 2008.

[36] D. Wilde and S. V. Rajopadhye. Memory reuse
analysis in the polyhedral model. Parallel Processing
Letters, 7(2):203–215, June 1997.

[37] M. Wolfe. Iteration space tiling for memory
hierarchies. In Proceedings of the Third SIAM
Conference on Parallel Processing for Scientific
Computing, pages 357–361, Philadelphia, PA, USA,
December 1989. Society for Industrial and Applied

Mathematics.

