
Joint Scheduling and Layout Optimization
to Enable Multi-Level Vectorization

Nicolas Vasilache1, Benoit Meister1, Muthu Baskaran1, and Richard Lethin1

1{vasilache,meister,baskaran,lethin}@reservoir.com
1Reservoir Labs Inc., New-York, NY, USA

ABSTRACT
We describe a novel loop nest scheduling strategy imple-
mented in the R-Stream compiler1 : the first scheduling for-
mulation to jointly optimize a trade-off between parallelism,
locality, contiguity of array accesses and data layout permu-
tations in a single complete formulation. Our search space
contains the maximal amount of vectorization in the pro-
gram and automatically finds opportunities for automatic
multi-level vectorization and simd-ization. Using our model
of memory layout, we demonstrate that the amount of con-
tiguous accesses, vectorization and simd-ization can be in-
creased modulo data layout permutations automatically ex-
posed by our technique. This additional degree of freedom
opens new opportunities for the scheduler that were previ-
ously out of reach. But perhaps the most significant aspect
of this work is to encompass an ever increasing number of
traditional optimization phases into a single pass. Our ap-
proach offers a good solution to the fundamental problem of
phase ordering of high-level loop transformations.

1. INTRODUCTION
The problem of optimizing loop nests has been extensively

studied in the last five decades [13]. So-called “traditional
compilers” perform these optimizations on a tree-based rep-
resentation of the program. Unfortunately, this representa-
tion suffers from crippling limitations such as code explo-
sion arising from the application of successive transforma-
tions and the dreaded phase ordering problem. The polyhe-
dral model [2, 8, 10] is a mathematical representation that
greatly reduces the code explosion and phase ordering issues
related to sequences of loop transformations [9]. A notable
property of this model is that a single solution to an opti-
mization problem is a combination of many loop transfor-
mations in the tree-based representation. Such a solution

1The technologies described in this paper are Patent Pend-
ing, Reservoir Labs, Inc. This work has been supported by
funding from DARPA under the UHPC program, contract
HR0011-10-3-0007, subcontract from Intel Corporation.

IMPACT 2012
Second International Workshop on Polyhedral Compilation Techniques
Jan 23, 2012, Paris, France
In conjunction with HiPEAC 2012.

http://impact.gforge.inria.fr/impact2012

represents a whole class of (infinitely many) sequences of
equivalent program transformations. Intuitively, the reader
may use the simple analogy of a line in a plane: a line con-
tains an infinite number of points (the transformations in
the tree-based representation) but it can be described by
a single equality (the représentant of this class of transfor-
mations in the polyhedral representation). Despite all the
recent progress in optimizing the schedule of loop nests at
a high level [5, 6, 17], a general formulation for discovering
vectorization is still missing.

This paper is decomposed as follows. First we remind
the reader of polyhedral concepts and restate one of the re-
sults of Vasilache’s thesis: the construction of a convex linear
space containing all legal affine schedules of loop nests [19].
In the following section, we build on this space to incremen-
tally introduce constraints expressing contiguity of a single
array reference along an arbitrary memory dimension and an
arbitrary schedule dimension. We then mix constraints on
multiple arrays and parallelism to derive vectorization con-
straints. These constraints allow the extraction of vector
loops at various levels in the loop nest hierarchy. We pro-
ceed by adding data layout permutations to our formulation
and discuss the benefits this additional degree of freedom
entails. Lastly we discuss the quality of the schedules and
compilation time implications of our successive formulations
on a set of 400 kernel benchmarks.

2. THE CONVEX AFFINE SPACE OF ALL
LEGAL SCHEDULES

The polyhedral model is a mathematical abstraction to
represent and reason about programs in a compact repre-
sentation. R-Stream operates on a generalized dependence
graph (GDG)-based IR containing, among other, the follow-
ing information.

2.1 GDG-based Intermediate Representation
Statements : A statement S is a set of operations grouped
together in our internal representation. Statements are the
nodes of the GDG. A statement in the model often corre-
sponds to a statement in the original program. Depending
on the level of abstraction, a statement can be arbitrarily
simple (i.e. micro-code) or arbitrarily complex (i.e. exter-
nal precompiled object).
Iteration Domains : An iteration domain DS is an or-
dered set of iterations associated to each statement S. It de-
scribes the loop iterations in the original program which con-
trol the execution of S. To model multiple levels of nested
loops, iteration domains are multi-dimensional sets. We de-



note the order between 2 iterations i1 and i2 of S by i1 ≪ i2
2 if S(i1) occurs before S(i2) in the program.
Memory References : A memory reference F is a func-
tion that maps domain iterations to locations in the memory
space. The image of DS by F represents the set of memory
locations read or written by S through memory reference
F . If F is injective, distinct memory locations are touched;
otherwise, memory reuse exists within the program. Each
statement can access multiple memory references in read
and/or write mode.
Schedules : A scheduling function ΘS is a function that
maps the iterations of S to time. It is a partial order that
represents the relative execution order of each iteration of S
relative to all other iterations of any statement in the pro-
gram. We use well-established terminology [9] where ΘS is
decomposed in (1) a linear part α that encompasses uni-
modular and non-unimodular loop transformations, (2) a
parametric constant part Γ for expressing multi-dimensional
shifts and (3) a constant β vector that encodes all possible
imperfectly nested loop structures. If the α function is in-
jective, the output program is sequential; otherwise parallel
iterations exist. In particular, the order ≪ extends to time
after scheduling is applied.
Dependences : A dependence {T → S} is a relation be-
tween the set of iterations of S and T . It conveys the infor-
mation that some iteration iT ∈ DT “depends on” iS ∈ DS

(i.e. they access the same memory location by application
of a memory reference) and that iS ≪ iT in the original
program. We write the set relation {(iT , iS) ∈ {T → S}} to
refer to the specific iterations of T and S that take part in
the dependence. With this notation, in the case of a read-
after-write dependence, T would be a read and S would be
a write.

2.2 Multi-dimensional Formulation
Dependences in the program are captured by dependence

edges in the GDG. Each edge is decorated by a dependence
polyhedron. Feautrier [8] showed that a necessary and suf-
ficient condition for a transformed program to be legal is
that the order of all iterations in a dependence be preserved:
∀(iT , iS) ∈ {T → S} ΘS(iS) ≪ ΘT (iT ). The affine form of
Farkas’ lemma, allows the linearization of such constraints
into a linear programming problem:

Lemma 2.1. Let D be a nonempty polyhedron defined by

A~x + ~b ≥ ~0. Any affine function f(~x) is non-negative ev-
erywhere in D iff it is a positive affine combination: f(~x) =

λ0 + ~λt(A~x + ~b), with λ0 ≥ 0 and ~λt ≥ ~0. λ0 and ~λt are
called Farkas multipliers.

This relationship is based on lexicographic ordering. Con-
sider a loop nest with induction variables (i1 . . . id). Any
dependence relation must be (1) strongly satisfied at some
loop depth k ∈ [1, d] (i.e. ΘT

k − ΘS
k ≥ 1), (2) weakly sat-

isfied until that depth (i.e. 1 ≤ l < k ⇒ ΘT
l − ΘS

l ≥ 0)
and (3) not influence correctness after is has been strongly
satisfied (i.e. k < l ≤ d ⇒ ΘT

l − ΘS
l ≥ −N∞(~n + 1), where

N∞ is a large enough constant 3 and ~n represents the global

2This relationship is based on lexicographic ordering: the
equation ~x ≪ ~0 is satisfied for ~x = (0, 0, 1,−1) but not for
~x = (−1, 0, 2).
3For N∞ to be bounded a limit is set on the absolute values
of the schedule coefficients; typically 16.

parameters in the program). This definition of satisfaction
encompasses traditional correctness criteria of loop-carried
and loop-independent dependences [13].

Each dependence must be strongly satisfied at some depth
k. We encode the satisfaction of a dependence {T → S} at

a depth k by a decision variable δ
{T→S}
k ∈ {0, 1}. Follow-

ing a simplification of Vasilache’s formulation proposed by

Feautrier, we write: ∀{T → S},
∑min(dS ,dT )

k=1 δ
{T→S}
k = 1.

The satisfaction constraints become:

∀ ∆ = {T → S}, ∀ k ∈ [1,min(dS , dT )], ∀ (iT , iS) ∈ ∆ :


















δ∆k ∈ {0, 1}
∑min(dS ,dT )

l=1 δ∆l = 1
ΘT

k (i
T )−ΘS

k (i
S) ≥

−N∞

(

∑l≤k−1
l=1 δ∆l

)

.(~n+ 1) + δ∆k

Figure 1: Convex space of all legal schedules.

For a more in-depth description, the reader should refer
to previous work [19, 17].

2.3 The Need for Invertible Schedules
In theory, the α portion of any schedule can be any le-

gal point in the Farkas cone generated by applying Farkas’
lemma to the previous convex polyhedron. When α is not
invertible, it is always possible to complete it into a full-rank
schedule to iterate over all the points in the domain. This
completion can be done at code generation time and con-
sists in adding innermost parallel loops to each statement,
with a heuristic for fusion [2]. Although this approach does
not reduce the number of parallel dimension, it may degrade
the parallelism granularity. Also, it does not exploit degrees
of freedom in the program to improve locality, contiguity
of memory accesses or vectorization. The problem is that
singular schedules give the impression a loop dimension is
parallel with the caveat that it may only contain a single
point !

Consider the example of a single statement S(i, j, k), sup-
pose the objective function is to maximize the 2 outermost
degrees of parallelism; the returned schedule / parallelism
markers may be (i, i, j)/(doall, doall, seq). After completion,
the schedule will really be (i, i, j, k)/(doall, doall, seq, doall),
which is exactly the same as (doall, seq, doall). In other
words, a scheduler may wrongly think it has found 2 out-
ermost levels of parallelism when it may have missed the
(k − i, j + i, i+ j + k)/(doall, doall, seq) solution.

R-Stream uses the multi-dimensional formulation to it-
eratively search for invertible schedules. At each step, it
computes full Θ schedules. These schedules may not be in-
vertible as a result of a single resolution of the ILP, so we
incrementally add linear independence constraints while still
searching for a full Θ schedule. Since a singular schedule can
always be completed at the innermost level, this approach
will always succeed if it is performed top-down. Linear in-
dependence constraints are added using the expression of
orthogonal subspaces [6] with additional enhancements. In
particular, we also model loop reversals and their combina-
tions unlike previous work [6, 17].

The contiguity constraints that we detail in Section 3.1 re-
quire a multi-dimensional formulation and the search of full



Θ functions at each step. The following search strategies are
currently implemented in R-Stream : (1) encoding the set of
all possible combinations of permutations and reversals; this
uses simple linear constraints and does not require an itera-
tive search, (2) top-down iterative search; this is guaranteed
to succeed but metrics computed at a given step may be
degraded at the next step because the linear independence
constraints make them unfeasible.

3. SCHEDULING FOR VECTORIZATION
In this section, we describe some features of the scheduling

algorithm implemented in R-Stream. We formulate trade-
offs between amount of parallelism, amount of locality and
amount of contiguous of memory accesses in a joint prob-
lem. This contiguity metric optimizes spatial reuse and is
targeted at memory hierarchies where accessing a contiguous
set of memory references is crucial to obtaining high perfor-
mance. Such hardware features include hardware prefetch
streams, simd and vector operations, and coalescing hard-
ware in GPUs.

3.1 Contiguity
We are interested in a characterization of the linear part

of an r-dimensional access function F to a memory reference
R4. For the remainder of this subsection, F represents the
linear part of the memory reference. We define the notion
of contiguity exhibited by a schedule relative to a memory
reference as follows.

3.1.1 Innermost Reuse Along a Memory Dimension

Definition Let F be a memory reference with r rows ac-
cessed by a statement S and α an invertible affine scheduling
function for S. We say α exhibits contiguity along memory
dimension r and along some (unspecified) schedule dimen-

sion, for reference F iff : F · α−1 =

[

M
mr,1 . . . mr,l

]t

,

for some matrix M and some tuple (mr,1, . . . , mr,l) where
card{i | mr,i 6= 0} ≤ 1.

If additionally, card{i | mr,i 6= 0} = 0, the reuse is both spa-
tial and temporal. The idea is then to include this additional
metric in our ILP. It is based on the realization that in the
transformed program, the last column of F · α−1 represents
the innermost dimension of the array access after code gen-
eration [2]. In the remainder of this paper, given a matrix
U , we use the notation Uk for the sub-matrix obtained by
removing row k. We suppose the number of loops enclosing
statement S is d. In this context, the invertible affine sched-
ule α has d rows. We are interested in a characterization of
αd.

Theorem 3.1. Let α an invertible affine schedule, α has
contiguity along some memory dimension k ≤ r and along
schedule dimension d on F iff Ker αd ⊆ Ker Fk.

Proof. If: Let α =

[

αd

τ

]

and α−1 =
[

T t
]

. Since

α · α−1 = I, we have αd · t = 0 (i.e. t ∈ Ker αd). If
4Suppose a statement accesses A[2 · i+ 3 · j −N + 1][k + 2]
of memory dimension 2, where N is a constant global pa-
rameter. The linear part is (2 · i + 3 · j, k). The linear part
of an access is subject to traditional unimodular transfor-
mations [1] but independent of loop shifting, loop peeling,
fusion or fission.

Ker αd ⊆ Ker Fk, then t ∈ Ker Fk (i.e. Fk · t = 0). It

follows, F ·
[

T t
]

= F · α−1 =





M1

0 · · · 0 mk,d

M2





t

for

some M1, M2 and mk,d.
Only if: Let α be an invertible schedule that exhibits

contiguity for F along memory dimension k ≤ r. Let α−1 =
[

T t
]

. From α · α−1 = I, we get αd · t = 0. From
the definition of contiguity, we get Fk · t = 0. These imply
Im t ⊆ Ker αd and Im t ⊆ Ker Fk. Furthermore, since α
is of full rank, dim(Ker αd) = 1. Thus Im t = Ker αd and
Ker αd ⊆ Ker Fk.

Corollary 3.1. Let α an invertible affine schedule. α
exhibits contiguity for F along memory dimension k ≤ r
and schedule dimension d iff Im Fk ⊆ Imαd.

The proof is trivial: Ker A ⊆ Ker B ⇔ Im B ⊆ Im A.
A simpler version of this characterization of contiguity had
already been discussed by Bastoul [3] in the case of the in-
nermost memory dimension. We go a step further by gen-
eralizing it to any memory dimension and by integrating
this characterization in our affine scheduler. The previous
demonstration generalizes to any row of α and reuse across
any schedule dimension d′ < d is obtained in the same way
as for d.

3.1.2 Simplified Objective Function
For the purpose of readability of this paper, we remove

discussions on the benefit of loop fusion/distribution. Still
the search space contains all the legal fusion/distribution
structures but we do not use them in the objective function.

The inclusion in our integer linear programming prob-
lem is done by constructing the following objective function
which trades off parallelism for innermost contiguity on the
innermost memory dimension. Throughout the formulas of
this paper, we use the letter G to denote the GDG. For each
statement in the program:

• wk is the benefit of dimension k of αk executing in
parallel,

• ∆k is a boolean variable determining whether dimen-
sion k of αk has doall semantics (∆k = 1 iff k is run in
parallel),

max
∑

S∈ G

∑

k∈[1,dS ]

wk∆k +Benefitcont

Linking the ∆k to the dependence satisfaction variables us-
ing the Farkas lemma is an interesting topic [14]. The se-
lection of the costs for the various wk is also important.
Usually, the coarser the parallelism, the higher the value.
We do not detail these points further in this paper.

3.1.3 Constraints for a Single Reference
In this section, we focus on constraints for a single state-

ment S of dimension d accessing a memory reference R with
access function F . The coefficients of the matrix F are
known; we are searching for the coefficients of α. We de-
scribe contiguity along the innermost schedule dimension d
of S and along the innermost array subscript r. For each
tuple F , d and r, we create a contiguity decision variable
cFr,d to encode whether contiguity is achieved along mem-
ory dimension r and schedule dimension d. αsf denotes the



schedule computed ’so far’, while α denotes the total sched-
ule out of which some of the first rows are fixed. αd denotes
α stripped of its last row d.
Linking the benefits of contiguity into the formulation is

done using Corollary 3.1. This is not standard practice in
polyhedral schedulers so we give additional details on how to
proceed. Note that in general the relationship Im F ⊆ Im α
is not linear so we can only bias the search towards the
desired space.
We start by pruning the following trivial cases:

1. if d = 1, contiguity is realized iff the access does not
have a component along d on another row than the
contiguity row,

2. if Im Fr ⊆ Im αsf contiguity is already achieved,

3. if n = dim (Fr ∩ αsf )− dim (αsf ) is greater than the
number of remaining dimensions to schedule, contigu-
ity is trivially impossible.

The remaining cases are as follows.
Case 1 : if n = dim (Fr ∩αsf )−dim (αsf ) is equal to the
number of dimensions remaining to schedule, the condition
becomes Im Fr = Im α which can be written as a set of
linear constraints. To this effect, we compute a basis of Fr.
Without loss of generality, we also denote this basis by Fr.
Let µ denote the line of α currently computed. Applying
Corollary 3.1 on αd, we obtain the constraints:

cFr,d ∈ {0, 1} (1)

µ− Fr · λ+N∞ · (1− cFr,d) ≥ 0 (2)

−µ+ Fr · λ+N∞ · (1− cFr,d) ≥ 0 (3)

where λ are unconstrained variables that are added to the
unknown set and serve the purpose of expressing the linear
dependence of µ on Rk; N∞ are well-chosen large constants.
The reasoning goes as follows. If cFr,d = 1 then the con-

straints become µ = Fr · λ. If cFr,d = 0, N∞ nullifies the
effects of these constraints by allowing the trivial solution
where all lambda are 0. It is important to realize the λ and
cFr,d variables influence each other in the search but that N∞

only depends on the maximal value of µ and can be statically
chosen without any assumption on λ.
Case 2 : if n = dim (Fr ∩ αsf ) − dim (αsf ) is smaller
than the number of remaining dimensions to schedule, then
we have slackness and we bias the remaining dimensions to
schedule towards Ker(Fr ∩ αsf )-orthogonal. In theory this
slackness makes the problem easier to solve by giving us
more options to extract contiguity. In practice, we need to
select n out of the remaining α dimensions. To this effect,
we compute a basis of Ker(Fr∩αsf )-orthogonal and we link
the contiguity decision variable to the number of dimensions
n′ along which the current dimension of α has non-zero dot
product. If n′ < n, the contiguity decision variable must be
0.

3.1.4 Discussion
The benefit of contiguity then becomes:

∑

S∈ G
d=dS

∑

R∈S
r = dim(F )

ρFr,d.c
F
r,d

where ρFr,d are well-chosen cost coefficients. These coeffi-
cients depend on properties of memory accesses (latency,
bandwidth, volume of data) and whether we give more prece-
dence to parallelism, contiguity or other constraints. A thor-
ough investigation of the space of those coefficients is a very
interesting research topic. The reader may note that our
constraints precisely pinpoint the arrays having innermost
contiguous accesses5. Note that it is straightforward to plug
in an upper bound on the number of non-contiguous accesses
and minimize this bound thus encompassing an existing for-
mulation on memory streaming prefetches [5].

for (i=1; i<=N; i++) { for (i=1; i<=N; i++) {
for (j=1; j<=N; j++) { for (j=-N+1; j<=N-1; j++) {

for (k=1; k<=N; k++) { for (k=max(-j+1,1);
A[i-k][k]=A[i-k][k]+1; k<=min(-j+N, N); k++) {

}}} A[-j][j+k]=A[-j][j+k]+1;
}}}

for (i=2; i <= N+1; i++) {
for (j=2; j <= M+1; j++) {

for (i=2; i <= 1+N; i++) { for (k=1; k <= L; k++) {
for (j=2; j <= 1+M; j++) { A[j][i][k]=A[j][i][k-1]+

for (k=1; k <= L; k++) { A[j][i-1][k];
A[k][i][j]=A[k][i][-1+j]+ }}}

A[k][-1+i][j]; for (i=2; i <= M+1; i++) {
B[1+k][i][j]=A[k][i][j]+ for (j=2; j <= N+1; j++) {

B[k][i][j]; for (k=1; k <= L; k++) {
}}} B[i+1][j][k]=A[i][j][k]+

B[i][j][k];
}}}

Figure 2: Contiguity Optimization

This is a good point to introduce two examples to illus-
trate contiguity. To better understand individual contribu-
tions, we completely disable the search for parallelization,
permutability and fusion in this first example. The ILP
objectives we use are, in their order of importance (1) max-
imize the contiguity metric, (2) minimize the absolute value
of schedule coefficients and (3) bias coefficients towards pos-
itive coefficients whenever possible. In particular, we only
try to optimize contiguity along the innermost level of sched-
ule and the innermost level of memory. Figure 2 shows the
original kernels we consider on the left and the result of op-
timizing communications on the right.

The top kernel illustrates the optimization of a single array
reference. The schedule found is (j,−i+k, i) and the access
to A is contiguous along k. We additionally experiment
with forcing all coefficients to be positive. In that case,
the returned schedule is (j, i, k) and the transformed access
function is A[j− k][k]. This is an example where restricting
schedules to the positive quadrant misses contiguity [6, 17].

The bottom kernel illustrates the tendency for the sched-
uler to fission loops in the absence of any fusion optimization
objective. The schedule found is (i, k, j) for the first state-
ment and (k, i, j) for the second.

3.2 Vectorization
With the availability of contiguity constraints, vectoriza-

tion can easily be encoded and optimized. The high-level
scheduling constraints and properties are the same except
for memory alignment.

5...the crucial objective as mentioned at the beginning of
this section.



3.2.1 Vectorization Constraints
We already mentioned that the proof of Section 3.1.1 holds

for any schedule dimension; the constraints are not difficult
to derive. When transposed to vectorization, this simple
generalization allows to search for multi-level vectorization
as follows.
First we introduce for each statement S and each loop

dimension 1 ≤ l ≤ dS a decision variable to encode whether
or not it is vectorizable: ΣS

l . If a statement is vectorizable
along k then it must also be parallel:

0 ≤ ΣS
l ≤ ∆S

l

We tie the ∆ variables together using the β coefficients: if
2 statements are nested under the same outer l loops, their
∆1, ...,∆l will be equal. As a consequence, the ΣS

l for state-
ments in a same loop will also be equal.
The next step is to link together the contiguity constraints

of all references within a statement. This is done schedule
dimension by schedule dimension. For each tuple (S, 1 ≤
l ≤ dS , F ∈ S, r = dim(F )), we write:

0 ≤ ΣS
l ≤ cFr,l

Integrating vectorization along any loop level in our cost
function is straightforward:

∑

S∈ G
l∈[1,dS ]

σS
l .Σ

S
l

where again the σS
l are well-chosen costs to model which

schedule dimensions of which statements are the most im-
portant to vectorize.

3.2.2 Discussion
We now replace the contiguity portion of the ILP objec-

tive by the vectorization benefit. The reader may verify that
the second example of Figure 2 also exhibits innermost par-
allelism in addition to contiguity. Therefore both its state-
ments are immediately simd-izable and the schedule is the
same.

doall (i=5; i<=N+M+L+2; i++) {
for (i=2; i<=1+N; i++) { for (j=max(2, i-N-L-1);
for (j=2; j<=1+M; j++) { j<=min(M+1, i-3); j++) {

for (k=1; k<=L; k++) { for (k=max(2, i-j-L);
A[i][j][k]=A[i][j-1][k+1]+ k<=min(i-j-1, N+1); k++) {

A[i-1][j][k+1]; A[k][j][i-j-k]=
A[k][j-1][i-j-k+1]+

}}} A[k-1][j][i-j-k+1];
}}}

Figure 3: Outer Vectorization Optimization

Another example is shown in Figure 3: the kernel on the
left becomes outermost vectorizable along i after scheduling
with (i+ j + k, j, k).
The benefits offered by multi-level vectorization are mul-

tiple. First, if the low-level compiler is powerful enough to
simd-ize non-innermost, imperfectly nested loops, R-Stream will
expose those loops automatically. Secondly, since the vector-
izable loops have doall semantics, they can always be strip-
mined and sunken to the innermost level. This creates op-
portunities to exploit multiple threads at the original loop
level combined with simd parallelism at the innermost level.

Current limitations of this formulation are twofold. First,
the vectorization constraints allow the extraction of paral-
lelism and contiguity along a single schedule dimension at
a time, per statement. This dimension may still be differ-
ent for each statement. This combines well with additional
parallelism and locality extraction but not yet with a sec-
ond level of vectorization. Secondly, the stride along the
innermost dimension is not guaranteed to be minimal and
packing/unpacking instructions may be necessary for simd-
ization even if a better solution would exist. Last, alignment
constraints do not fold directly in this formulation, particu-
larly when the transformed access on the innermost memory
dimension is a function of multiple induction variables. This
is the case in Figure 3 where the alignment changes at every
single iteration of the i and j loop. Recent work by Hen-
retty et al. [11] can be applied to change the layout and is
applicable in our case. Addressing these issues will be the
subject of future research.

3.3 Joint Vectorization And Data Layout
In this section, we take advantage of the data layout trans-

formation phase in R-Stream to devise even more powerful
scheduling algorithms. We show how to add constraints that
allow contiguity along any memory dimension, and not just
the innermost. This makes the problem less constrained and
the scheduler more flexible thanks to an additional degree
of freedom. The output of our optimization problem is a
schedule with parallelism indicators augmented with a set
of data layout permutations that should be applied to re-
alize the full vectorization. This generalization requires the
introduction of new variables:

• for each tuple determined by a statement S, an array A
accessed by that statement and an admissible schedule
dimension l ∈ [1, dS ] of reuse, we insert a new decision

variable pS,Al . It encodes whether all the references
to the given array within the statement are contigu-
ous along schedule dimension l and some unspecified
memory dimension,

• for each tuple determined by a statement S, an array
A accessed by that statement, an admissible sched-
ule dimension l ∈ [1, dS ] of reuse and and admissible
memory dimension of reuse r, we insert a new deci-
sion variable qS,Al,r . It encodes whether all references to
A within the statement are contiguous along a fixed
schedule dimension and a fixed memory dimension.

These clearly represent a lot of variables and special care
must be taken with respect to the scalability of the ILP. On
the other hand these new variables are auxiliary variables
that do not appear in the objective function. We discuss
scalability issues in the next section. The constraints are not
difficult to write but they involve potentially many variables.
First the simd decision variables ΣS

l are linked to the pS,Al ,

then the qS,Al,r are linked to the pS,Al :



∀S ∈ G, ∀l ∈ [1, dS ] KS
1 · ΣS

l ≤
∑

A∈S

pS,Al

∀S ∈ G, ∀l ∈ [1, dS ], ∀A ∈ S pS,Al ≤
dim A
∑

r=1

qS,Al,r

∀S ∈ G, ∀l ∈ [1, dS ], ∀A ∈ S,

F accesses A KS,A
3 · qS,Al,r ≤

∑

F acc. A

cFl,r

KS
1 is the number of distinct arrays accessed by S. KS,A

3 is
the number of distinct references to array A within S.
Figure 4 shows an example of this additional benefit of

our formulation. In this case, we only look for vectorization
at the innermost schedule level. We allow contiguity along
any array dimension to illustrate data layout permutation
constraints. We do not show the original kernel and leave it
as an exercise for the reader to derive it from the transformed
variants.
The code on the left is the result of looking for maximal

innermost vectorization without data layout permutation.
In this case the computed schedules are (i, j, k) and (j, k, i)
respectively.
The code on the right is obtained after turning on data lay-

out permutations in our formulation. Now contiguity is al-
lowed along any memory dimension as long as it is the same
dimension in all the accesses to the same array within the
statement. In this case the schedules computed are (j, k, i)
and (k, i, j). The second statement becomes vectorizable
modulo the permutation of rows 2 and 3 of both arrays A
and B.
The benefits of this formulation are clear: additional op-

portunities for vectorization appear that are not available
without this new degree of freedom.

for (i=2; i<=N+1; i++) { for (i=2; i<=M+1; i++) {
for (j=2; j<=M+1; j++) { for (j=2; j<=N+1; j++) {

doall (k=1; k<=L; k++) { doall (k=1; k<=L; k++) {
A[i][j][k]=A[i][j-1][k]+ A[j][i][k]=A[j][i-1][k]+

A[i-i][j][k]; A[j-1][i][k];
}}} }}}
for (i=2; i<=M+1; i++) { for (i=1; i<=L; i++) {
for (j=1; j<=L; j++) { for (j=2; j<=N+1; j++) {

for (k=2; k<=N+1; k++) { doall (k=2; k<=M+1; k++) {
B[k][i][j+1]=A[k][i][j]+ B[j][k][i+1]=A[j][k][i]+

B[k][i][j]; B[j][k][i];
}}} }}}

Figure 4: Joint Vectorization and Data Layout

At this point, the expression of data layout permutations
is at the granularity of a statement and the simd-ization we
find is likely to require the insertion of layout transformation
between statements. The kernel on the right is an example
of this property: A is written in the first statement and it
is read in the second. Because of these dependences, it is
not possible to have a single layout transformation before
the first statement. It is easy to extend our formulation to
increase the granularity of the layout to a set of statements;
for instance to all the statements that would end up in the
same tile after one pass of coarse-grained scheduling. The
prospects for future extensions and experiments are exciting.

4. SCALABILITY EXPERIMENTS
The experiments we conduct focus on statistical results

and on the scalability of various scheduling strategies based
on our formulation. In Figure 5 we describe the amount of
contiguity, vectorization and the compilation times incurred
with different strategies.
Default : the base strategy that optimizes in this order for
(1) maximal vectorization along the innermost schedule and
memory dimensions, (2) maximal outermost parallelism, (3)
maximal contiguity for independent arrays, (4) minimal ab-
solute value of schedule coefficient and (5) bias coefficients
towards positive values.
NoObj is the base strategy with no objective function. It
just picks an integer point in the search space.
Identity additionally forces the identity schedule for all
statements and uses the cost function of the Default strat-
egy. Beta coefficients are still free so it will only look for
the best fusion/distribution structure that maximizes the
objective.
Permutations is a little less constrained than Identity ; it
forces the schedules to be combinations of loop interchanges
and loop reversals. In this particular case, a single schedul-
ing pass can be performed and we avoid the cost of incre-
mentally searching for invertible schedules.
OuterSimd allows the Default strategy to look for the best
outermost simd-ization.
Layout allows the Default strategy to look for the simd-
ization modulo data layout permutations (independently on
each statement).
OuterSimdLayout is the conjunction of OuterSimd and
Layout.
AS : the coarse-grained multi-dimensional Affine Schedul-
ing strategy implemented in R-Stream trades off parallelism
and locality. It does not contain the formulations of this
paper and is shown for reference.

The strategies NoObj, Identity, Permutations are inter-
nally used as debugging and as the base cases to incremen-
tally check the overhead of our formulation. Our testbed
consist in close to 400 kernel benchmarks whose complexity
vary from the simple examples presented in this paper to big-
ger kernels such as computation intensive radar codes with
a few dozen statements. To stress test the formulation, we
schedule the whole kernel and do not limit the optimization
to well-chosen subgroups of statements (i.e. statements that
would belong to the same tiles). Given the complexity of the
constraint sets we generate, we implement various indepen-
dent checks to ensure (1) the schedules and their parallelism
are correct with respect to the input dependences, (2) the
contiguity decision variables are true if and only if the ac-
cesses after code generation are indeed contiguous and (3)
simd variables are true if and only if the statement is simd-
izable (modulo data layout permutations when applicable).

We run the following steps in this order. First we parse
the input program and convert it to a GDG, this has negligi-
ble overhead. Then we perform exact dependence analysis,
scheduling using our multi-dimensional formulation with the
different objectives described and, lastly, polyhedral scan-
ning. We report the total time spent in each phase for the
whole set of 400 kernel benchmarks and provide additional
statistical information to quantify the quality and proper-
ties of the schedules we find. R-Stream is run on a Xeon
E5520 and we use version 3.1 of the Gurobi ILP solver. The
timeout in the solver is set to 15 seconds. For the sake of il-



Strategy Num contiguous Num simd Simd depth DepAnal (s) Scheduling (s) CodeGen(s) Num T/O
NoObj - - - 16.5 190 14.2 2
Identity 179 23 27 16.7 290 16.7 2

Permutations 673 75 119 17.2 78 17.2 2
Default 1637 386 586 16.5 467 16.6 2

OuterSimd 2891 348 418 16.5 575 16.5 2
Layout 2107 483 772 16.6 466 16.6 2

OuterSimd
+ Layout 6999 368 244 15.8 796 15.8 3

AS - - - 17.1 90 4 0

Figure 5: Statistical Aggregate Performance of the Scheduler on 400 Examples

lustration of the current performance of our unoptimized for-
mulation we report those timeouts. It can safely be assumed
that our formulation is currently less scalable than previous
techniques by virtue of a higher number of integer variables
and constraints. Scalability will be an important subject of
future work where we will also report additional statistical
data on the composition of our kernel benchmarks.
The table in Figure 5 displays the aggregated results of

running our set of 400 kernel benchmarks. The first col-
umn returns the total number of loops that exhibit contigu-
ous memory accesses. The first 4 rows in the table only
track contiguity along the innermost schedule and memory
dimensions. The number of contiguity dimensions gradu-
ally augment as we relax the constraints on the admissible
schedules. In the 5th, 6th and 7th row, the scheduler allows
contiguity along any schedule dimensions, any memory di-
mension and any schedule/memory dimension respectively.
Comparing rows for OuterSimd and Layout show there are
more opportunities for contiguity in our examples by vary-
ing the schedule dimension than the memory dimensions.
OuterSimdLayout finds significantly more contiguity.
The analysis of the simd columns is interesting. The num-

bers unsurprisingly augment as we relax the strategies but
the numbers suddenly drop in the OuterSimdLayout row.
This actually reflects a drastic change in the “quality” of
the vectorization found. There are quite less simd dimen-
sions found but their depth is also much smaller: vector-
ization opportunities are found at a substantially coarser
grain. It is interesting to note that considering permuta-
tions and reversals only seem to offer an interesting tradeoff
between compilation time and quality of the vectorization.
Lastly, the coarse-grained affine scheduler is rather scalable
and succeeds on all the kernels. This hints at a future strat-
egy where we will (1) use AS to schedule for coarse-grained
parallelism and locality, (2) perform tiling and (3) use our
new scheduler for fine-grained and simd parallelism and (4)
adjust with potential data layout transformations.

5. RELATED WORK
Vectorization and simd-ization are important topics at-

tacked by industrial compilers [4, 7, 21]. Still the problem of
finding good loop transformations to maximize the amount
of simd-izable loops does not have a good general solution to
this date. Previous work has tackled the efficient generation
of simd instructions for already vectorizable loops and has
focused on important low level issues such as packing and
unpacking data, adapting to various kind of misalignments
and devising cost models to decide when a loop should be
vectorized or not. Our work is complementary and attacks

the difficult problem of loop nest transformations to find
proper preconditionings that enables further optimizations
to proceed. Since our solution finds multi-level vectoriza-
tion, it is also a good solution for GPUs which “should be
viewed as multi-threaded multi-core vector units” [20]. Our
work bridges the gap between the input language and the
required performance: it is less critical to program using
vector intrinsics or CUDA if a good vectorizer is available.

Another interesting contribution shows the benefits of gen-
erating outer-loop vectorization and emphasizes on the fact
that outer-loop vectorization provides new reuse opportu-
nities, including efficient handling of alignment [16]. Our
work finds these opportunities for outer loop vectorization
even when they are deeply hidden in the loop structures and
require a complex mix of affine transformations and data
layout permutations.

Recent work showed the importance of vectorizing on a
high-level representation of the program [12] but in the spe-
cial case of streaming programing. Our solution also deals
with a high-level representation of the program but is not
limited to programs expressible in a streaming paradigm.
Since the authors mention that “traditional vectorization
techniques can also be a viable approach to perform simd-
ization on streaming applications,” our work may also gen-
eralize theirs.

Within the polyhedral framework, it is known that use-
ful high-level properties of programs can be optimized such
as maximal fine-grained parallelism using Feautrier’s algo-
rithm [8], maximal coarse-grained parallelism of a fixed loop
nest using Lim and Lam’s algorithm [15] or maximal paral-
lelism given a (maximal) fusion/distribution structure using
Bondhugula et al.’s algorithm [6]. More recent work ex-
plored ways to integrate in a single formulation constraints
for hardware prefetch stream buffer utilization, locality and
parallelism [5]. Recently, a new characterization of the ex-
act convex space of all legal multi-dimensional schedules has
been devised [19] and schedulers are starting to appear that
use this formulation [17], though not as powerful as the R-
Stream implementation described here. Our solution ex-
ploits this structured space and extends on previous work
by enabling joint optimization of multiple search criteria.
These criteria are: parallelism, locality, vectorization and
data layout permutations. Our formulation unifies previous
work and additionally enables vectorization and data lay-
out transformations in a single complete formulation. Our
work is also related to a recent contribution by Trifunovic et
al.[18]. They devise a polyhedral loop scheduling strategy
and a cost model to drive auto-vectorization. Their schedul-
ing strategy only looks for loop permutations and is weaker



than the Permutations strategy which also considers loop re-
versals. Our work introduces a much more general schedul-
ing formulation where arbitrary affine transformations and
fusion/distributions are found. Our work formulation also
includes data layout transformations. On the other hand,
our work does not detail our cost model, this is left for fu-
ture work.

6. CONCLUSION AND FUTURE WORK
In this paper, we focused on thoroughly describing a new

formulation implemented in the R-Stream compiler. We
will present detailed performance evaluation using advanced
multi-level scheduling strategies in a subsequent paper. We
will be interested in exploring the transformation space across
benchmarks and across architectures, on both cache-based
and explicitly managed memory architectures.
The opportunities opened by our algorithm are significant.

In particular, we showed that the formulation of contiguity
and vectorization is inherently multidimensional. Therefore,
any search procedure that is not based on the convex space
of all legal schedules will miss vectorization opportunities. It
will be interesting to compare heuristics in advanced com-
pilers and determine how much vectorization is lost.
A very promising aspect of these joint scheduling and

data layout transformations is they fit naturally in the cur-
rent mapping flow of R-Stream. At a high-level glance, R-
Stream first performs coarse-grained scheduling and tiling.
Tile sizes are selected such that the footprint of the accessed
arrays fit into a given memory (scratchpad, cache, ...). Then
R-Stream performs fine-grained scheduling to improve the
contiguity and simd properties of the code. At this point,
R-Stream introduces communications and temporary arrays
to store data closer to the processing elements. This feature
is available for cache-less memory architecture and as an op-
tion on cache based machines by using virtual scratchpads.
This is where R-Stream performs data layout transforma-
tions that could be very useful for memory alignment [11].
Iterative optimization and machine learning based on our

formulation are very likely to have a drastic impact on the
generated code. In this context it will be interesting to turn
optimizations on or off and explore the values of the different
cost coefficients we mentioned.
Lastly, our formulation has interesting implications on

power consumption since contiguity and locality are key op-
timizations to improve the behavior of memory traffic.

7. ACKNOWLEDGMENTS
We are grateful Allen Leung for his successful linking of

Bastoul’s characterization to the constraints (1)-(3) in the
special case when k = l on a single dimensional formulation.
We also thank Albert Hartono for preliminary work on reuse
constraints on a single dimensional formulation.

8. REFERENCES

[1] R. Allen and K. Kennedy. Optimizing compilers for
modern architectures : a dependence-based approach.
Morgan Kaufmann, 2002.

[2] C. Bastoul. Code generation in the polyhedral model
is easier than you think. In PACT’04, pages 7–16,
Juan-les-Pins, Sept. 2004.

[3] C. Bastoul. Improving Data Locality in Static Control
Programs. PhD thesis, University Paris 6, Pierre et
Marie Curie, France, Dec. 2004.

[4] A. J. C. Bik. Software Vectorization Handbook, The:
Applying Intel Multimedia Extensions for Maximum
Performance. Intel Press, 2004.

[5] U. Bondhugula, O. Günlük, S. Dash, and
L. Renganarayanan. A model for fusion and code
motion in an automatic parallelizing compiler. In
PACT, pages 343–352, June 2010.

[6] U. Bondhugula, A. Hartono, J. Ramanujan, and
P. Sadayappan. A practical automatic polyhedral
parallelizer and locality optimizer. In ACM SIGPLAN
Programming Languages Design and Implementation
(PLDI ’08), Tucson, Arizona, June 2008.

[7] A. E. Eichenberger, P. Wu, and K. O’Brien.
Vectorization for SIMD architectures with alignment
constraints. In Proceedings of the ACM SIGPLAN
2004 conference on Programming language design and
implementation, PLDI ’04, pages 82–93, New York,
NY, USA, June 2004. ACM.

[8] P. Feautrier. Some efficient solutions to the affine
scheduling problem. Part II. Multidimensional time.
International Journal of Parallel Programming,
21(6):389–420, Dec. 1992.

[9] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen,
D. Parello, M. Sigler, and O. Temam. Semi-automatic
composition of loop transformations for deep
parallelism and memory hierarchies. Int. J. Parallel
Program., 34(3):261–317, June 2006.

[10] G. Gupta and S. Rajopadhye. The Z-polyhedral
model. In PPoPP’07, pages 237–248, New York, NY,
USA, June 2007. ACM Press.

[11] T. Henretty, K. Stock, L.-N. Pouchet, F. Franchetti,
J. Ramanujam, and P. Sadayappan. Data layout
transformation for stencil computations on short
SIMD architectures. In CC’11, Saarbrücken, Germany,
Mar. 2011. Springer Verlag.

[12] A. Hormati, Y. Choi, M. Woh, M. Kudlur, R. M.
Rabbah, T. N. Mudge, and S. A. Mahlke. Macross:
macro-simdization of streaming applications. In
ASPLOS, pages 285–296, Mar. 2010.

[13] K. Kennedy and J. R. A. Optimizing compilers for
modern architectures: a dependence-based approach.
Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2002.

[14] A. K. Leung, N. T. Vasilache, B. Meister, and R. A.
Lethin. Methods and apparatus for joint parallelism
and locality optimization in source code compilation,
Sept. 2009.

[15] A. W. Lim and M. S. Lam. Maximizing parallelism
and minimizing synchronization with affine
transforms. In PoPL’97, pages 201–214, Paris, France,
Jan. 1997.

[16] D. Nuzman and A. Zaks. Outer-loop vectorization:
revisited for short simd architectures. In PACT 08,
pages 2–11, New York, NY, USA, Sept. 2008. ACM.

[17] L.-N. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen,
J. Ramanujam, P. Sadayappan, and N. Vasilache.
Loop transformations: Convexity, pruning and
optimization. In 38th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages



(POPL’11), Austin, TX, Jan. 2011.

[18] K. Trifunovic, D. Nuzman, A. Cohen, A. Zaks, and
I. Rosen. Polyhedral-model guided loop-nest
auto-vectorization. In PACT, pages 327–337, Sept.
2009.

[19] N. Vasilache. Scalable Program Optimization
Techniques In the Polyhedral Model. PhD thesis,
University of Paris-Sud, Sept. 2007.

[20] V. Volkov and J. W. Demmel. Benchmarking gpus to
tune dense linear algebra. In SC ’08, pages 1–11,
Piscataway, NJ, USA, Nov. 2008. IEEE Press.

[21] P. Wu, A. E. Eichenberger, and A. Wang. Efficient
simd code generation for runtime alignment and length
conversion. In CGO ’05, pages 153–164, Washington,
DC, USA, Mar. 2005. IEEE Computer Society.


