Simplifying Dependent Reductions

Sanjay Rajopadhye
Colorado State University
Overview

Problem → Algorithm → Program

Optimizing Compiler

Simplifying Reductions

Improved algorithm

Improved Program
A reduction is an associative and commutative operator applied to collections of values to produce a single or collections of results.
Reductions

- A reduction is an associative and commutative operator applied to collections of values to produce a collection of results
- Our collections are polyhedral sets
Compute an array Y given by the equation

$$Y_i = \sum_{k=0}^{i} X_j$$

for $i = 0$ to n

\[
Y[i] = 0; \\
\text{for } j = 0 \text{ to } i \\
Y[i] += X[j]
\]

$Y[0] = X[0]$;

for $i = 1$ to n

$Y[i] = Y[i-1]+X[i]$
Outline

- Introduction and Problem Definition
- Sharing
- Simplification
 - Multidimensional Simplification
- Gautam Rajopadhye algorithm
- Dependent Reductions, what’s the problem?
- Coupling Scheduling and Simplification
- Related Work & Conclusions
Three equivalent forms of representation

Geometric

Loops (bounds define the polyhedron)
for $i = 1$ to n {
 $Y[i] = 0;$
 for $j = 1$ to $i-1$
 for $k = 1$ to $i-j$
 $Y[i] += F[i,j,k];$
 }

Equations

$$Y_i = \sum_{j=1}^{i-1} \sum_{k=1}^{i-j} F_{i,j,k}, \quad i \in 2, \ldots, n$$
If \(F_{i,j,k} = X_k \)

- All index points on planes parallel to the \(\{i,j\} \) plane have the same value
- \(\{i,j\} \) is called the share space
- Denoted by green

- Aim to replace this polyhedron by one of lesser dimensions

\(\text{Share space} \)
Simplification
Simplification
Simplification
Simplification
Multidimensional Simplification

Diagram showing a multidimensional space with axes i, j, k, and F, Z, Y.
Multidimensional Simplification
Multidimensional Simplification
Multidimensional Simplification
Another Option
GR 2006 Algorithm

\[Y_i = \sum_{j=i}^{\min(2i+N-1,3N-1)} X_j \]

- Preprocessing:
 - Determine the share/reuse space
 - Construct the face lattice
- Pick a reuse vector \(\rho \)
- Translate domain along \(\rho \)
- Delete the intersection, retain residual computation on the differences (facets)
- Label each facet as:
 - Boundary
 - Inward/outward/invariant (function of \(\rho \))
- Ignore outward boundary & invariant facets
- Accumulate inward boundary (initialize)
- Add inward facets
- Subtract outward facets
- Recurse on each facet
Infinitely many choices

- Only finitely many labels
- All choices of \(\rho \) that yield the same facet labels are equivalent for complexity reduction
- Only finitely many choices at each level
 - May need to backtrack
- All roads lead to Rome: if reduction operator admits an inverse,
 - All available dimensions can be fully exploited
 - All choices of reuse vectors to exploit are equivalent
Dependent Reductions

What if X depends on Y?

Not all reuse vectors are legal
- Cyclic dependences
- Couple simplification with scheduling
 - Polyhedral scheduling is well known when dependences are given
 - But reuse vectors are unknown (chosen as the algorithm recurses down the face lattice)

\[
Y_i = \sum_{j=i}^{\min(2i+N-1, 3N-1)} X_j
\]

\[
X_i = f(Y_{j-1})
\]
Solution

- Key insight: The feasible space of legal schedules is a finitely generated (w generators $\theta_1 \ldots \theta_m$) blunt (i.e., does not contain the origin) cone.

- Start with the feasible space of all schedules of the original program.

- When choosing the reuse vector ρ at each face, make sure that the cone does not become empty:
 - At least one of the generators satisfies that $\theta_i \rho$ is non-negative.
 - Leads to m disjunctions, but only finitely many choices.
 - Retains optimality of GR 2006.
Related Work

- Roychowdhury 1988
- Delosme Ipsen 1985
- Yang Atkinson and Carbin [POPL 2021]
 - First to formulate the problem
 - Many practical use cases from probabilistic programming
 - Formulated solution as bilinear programming plus simple heuristic that works in practice.
Conclusions

- Simplifying reductions has practical benefits
- Dependences add a new twist (whole program analysis, not just one equation)
- We can have optimal simplification even with dependences